Homework 6, Advanced Calculus

DUE $3 / 8 / 17$
Please hand in your home work before class, have it neatly written, organized (the grader will not decipher your notes), stapled, with your name and student ID on top.

Problem 1. Consider the map $f\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}, x_{1}^{2}-x_{2}^{2}\right)$ from class.
(i) Show that f as a map $f: U \rightarrow V$ where $U=\left\{x \in \mathbb{R}^{2} ; x_{1}>0, x_{2}>0\right\}$ and $V=\left\{y \in \mathbb{R}^{2} ; y_{1}>0\right\}$ is bijective.
(ii) Calculate the inverse function $f^{-1}: V \rightarrow U$, i.e. find an explicit formula $f^{-1}\left(y_{1}, y_{2}\right)=$?
(iii) Verify that both f and f^{-1} are differentiable. Thus $f: U \rightarrow V$ is a diffeomorphism.
(iv) Draw the y_{1} and y_{2} lines under the map f^{-1}, i.e. the curves $y_{1} \mapsto$ $f^{-1}\left(y_{1}, y_{2}\right)$ for $y_{2}=c$ constant and similar for the y_{2} lines.

Problem 2. Consider the spherical coordinates

$$
f(r, \alpha, \beta)=(r \cos \alpha \cos \beta, r \sin \alpha \cos \beta, r \sin \beta)
$$

on \mathbb{R}^{3}.
(i) Calculate $\operatorname{Df}(r, \alpha, \beta)$ and its determinant $\operatorname{det} \operatorname{Df}(r, \alpha, \beta)$.
(ii) Calculate the image $V=f(U)$ under f of the open domain $U=(0, \infty) \times$ $(0,2 \pi) \times(-\pi / 2, \pi / 2)$.
(iii) Show that $f: U \rightarrow V$ is a diffeomorphism, i.e., f is bijective and f, f^{-1} are differentiable.
(iv) Draw the r, α and β lines under f.

Problem 3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear map $f(x)=A x$ given by an $m \times n$ matrix A. Give an argument why f is differentiable and calculate $D f(x)$.

Problem 4. Let $A, B: \mathbb{R} \rightarrow M_{n}$ be two differentiable functions of $t \in \mathbb{R}$ with values in $n \times n$ matrices. Calculate a formula for the derivative of the matrix product $\frac{d}{d t}(A B)$ in terms of $\frac{d}{d t} A$ and $\frac{d}{d t} B$.
Problem 5. Consider the equations
$y_{1}=x_{1}+x_{1} x_{2} x_{3}, \quad y_{2}=x_{2}+x_{1} x_{3}, \quad y_{3}=x_{3}+2 x_{1}+3 x_{3}^{2}$
(i) Verify that $x=y=(0,0,0)$ is a solution of those equations.
(ii) Use the inverse function theorem to show that one can solve the equations uniquely for x provided y is close enough to zero. Hint: think of $y=f(x)$ for a differentiable function (which one) on \mathbb{R}^{3}; check $f(0)=0$; now try to find an argument - using a Theorem from class - why one has f^{-1} (at least near $y=0$).

Problem 6. Consider the equation in 3 variables

$$
x_{1}+x_{2}-y+\sin \left(x_{1} x_{2} y\right)=0
$$

(i) Verify that $\left(x_{1}, x_{2}, y\right)=(0,0,0)$ solves this equation.
(ii) Apply the implicit function theorem to show that one can solve for y explicitly in terms of $\left(x_{1}, x_{2}\right)$ provided $\left(x_{1}, x_{2}\right)$ is near $(0,0)$, that is, show
that there exists a smooth function $y=g\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right)$ near $(0,0)$ so that

$$
x_{1}+x_{2}-g\left(x_{1}, x_{2}\right)+\sin \left(x_{1} x_{2} g\left(x_{1}, x_{2}\right)\right)=0
$$

(iii) Calculate $\operatorname{Dg}\left(x_{1}, x_{2}\right)$.

Problem 7. Is the equation

$$
\cos (x y)+e^{x+y}=1
$$

solvable for y as a function of x near $(x, y)=(0,0)$?

