Homework 4: Due Mar. 11th, 2016

1. **Markov Matrices** Show that all eigenvalues λ of a Markov Matrix A satisfy $|\lambda| \leq 1$. (Hint: for any eigenvector v of A^T, we can scale so that $\max_i |v_i| = 1$. Show that $|(A^T v)_i| \leq 1$.)

2. **Convergence of Markov Matrices** Suppose A is a Markov matrix, so $\lambda_1 = 1$. Suppose that $|\lambda_i| < 1$ for $i = 2, \ldots, n$ and assume that A is diagonalizable with eigenbasis $\{v_i\}_{i=1}^n$. For initial vector w_0, let $w_0 = \sum_{i=1}^n c_i v_i$. Find $\lim_{m \to \infty} A^m w_0$.

3. If A and B are Hermitian matrices, does it follow that AB is a Hermitian matrix?

4. A Hermitian matrix $A \in \mathbb{C}^{n \times n}$ is called positive definite if $\langle Av, v \rangle > 0$ for every nonzero vector $v \in \mathbb{C}^n$. Show that A is positive definite if and only if it has positive eigenvalues.

5. **Rayleigh Quotient** For a Hermitian matrix A, we define the the Rayleigh Quotient

$$R(A, w) = \frac{w^* A w}{w^* w}.$$

Let $\{v_i\}_{i=1}^n$ denote an orthonormal eigenbasis for A.

(a) For an eigenvector v_i, what is $R(A, v_i)$?

(b) If we take $w = v_1 + v_2$, what is $R(A, w)$?

(c) If we take $w = \sum_{i=1}^n \alpha_i v_i$, what is $R(A, w)$?

(d) Show that

$$\max_i \lambda_i = \max_{w \in \mathbb{C} \setminus 0} R(A, w)$$

(e) Construct an example to show that (d) is not true if A is not Hermitian.