Solutions for Practice Midterm 1

Alexei Oblomkov

October 12, 2017

Note: these are answers for the question, but for full credit on the exam, you must show your work and justify your answers.

Problem 1

a)

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

b) Not invertible, the echelon form does not have a pivot in every row.
c) The $(1,1),(2,2)$, and $(3,4)$ entries
d) Having no solution is possible. Having infinitely many solutions is possible. Having a one unique solution is not possible.

Problem 2

a)

$$
\mathbf{x}=\left[\begin{array}{c}
1-s \\
2+2 s \\
s
\end{array}\right]
$$

b)

$$
\mathbf{x}=\left[\begin{array}{c}
-s \\
2 s \\
s
\end{array}\right]
$$

c) No because the echelon form of A has a row of zeroes.

Problem 3.

The echelon form of the matrix $\left[v_{1}, v_{2}, v_{3}\right]$ is

$$
\left[\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right] .
$$

Hence
a) the vectors v_{1}, v_{2}, v_{3} are linearly independent because there is a pivot in every column
b) they span \mathbb{R}^{3} because there is a pivot in every row.

Problem 4.

a)The matrix of the linear transform is

$$
\left[\begin{array}{cc}
0 & \sqrt{2} / 2 \\
0 & \sqrt{2} / 2
\end{array}\right]
$$

It is neither one-to-one nor is onto.
b) The matrix of the linear transform is

$$
\left[\begin{array}{ll}
1 & 3 \\
1 & 2 \\
7 & 1
\end{array}\right]
$$

Since the echelon form of this matrix is

$$
\left[\begin{array}{cc}
1 & * \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

this linear transform is one-to-one but not onto.

Problem 5.

a)

$$
\left[\begin{array}{ccc}
8 & -3 & 1 \\
-17 & 7 & -3 \\
5 & -2 & 1
\end{array}\right]
$$

b) The solution is $A^{-1} v$ where

$$
v=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right] .
$$

The solution is

$$
\left[\begin{array}{c}
12 \\
-28 \\
9
\end{array}\right] .
$$

Problem 6.

a) $2 / 3 A-1 / 3 C^{-1} B^{-1} F E^{-1} D^{-1}$. The solution is unique.
b) If A or F were singular, the solution above is still valid and unique.

However, if B, C, D, E are singular, then there isn't a solution for all F.

