Math 235 Practice Midterm 2.

Instructions: Exam time is 2 hours. You are allowed one sheet of notes (letter-size paper, both sides). Calculators, the textbook, and additional notes are *not* allowed. Justify all your answers carefully.

Q1.

(a) Let A be a 2×2 matrix with det A = 3. Compute the determinant of the matrix

$$B = \begin{bmatrix} A & 1 & 2 \\ & 3 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 6 & 0 \end{bmatrix}$$

(b) Let C be a 3×3 matrix which is not invertible and let D be the 4×4 matrix

$$D = \begin{bmatrix} & & 0 \\ C & & 0 \\ & & 0 \\ r & s & t & 1 \end{bmatrix}$$

where r, s, and t are real numbers. Explain why D is not invertible.

Q2. Find a basis for Col A and Nul A for the following matrix

[1	0	2	0	-1	-1	-3
1	1	4	0	-1	0	-1
1	0	2	1	0	0	
1	0	2	0	-1	0	-1

Q3. Let C be a 2×3 matrix such that $C\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^2$ and let D be a 3 × 2 matrix such that $D\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.

a) Explain why the product DC is never invertible.

b) Is the product CD always invertible?

Q4. Let P_2 denote the space of all polynomials of degree less than or equal to 2.

a) Does the set $\mathcal{B} = \{(t-1)(t-2), (t+1)(t+2), t\}$ form a basis for P_2 ? b) The set $\mathcal{B} = \{t^2 + t + 1, t^2 + 2t + 1, 3t + 1\}$ forms a basis for P_2 . Find the coordinates of $q(t) = 3t^2 + t - 1$ in the \mathcal{B} basis.

Q5 a) Let V denote the vector space of all 2 by 2 matrices. Is the map $T: V \to \mathbb{R}$ given by $T(A) = \det A$ a linear transformation?

b) Let V be the set of all continuous functions f where f(0) < f(1). Is V a vector space?

c) Let V be the set of all odd functions, that is f(-x) = -f(x) for every real number x. Is V a vector space?

Q6. Consider the sphere of radius 1 centered at the origin in \mathbb{R}^3 , whose volume is $\frac{4}{3}\pi$. We transform the sphere via a linear transformation whose matrix in the standard basis is given by

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

What is the volume of the resulting shape?

What is det A^9 for the above A?