Math 235 Practice Midterm 2.

Instructions: Exam time is 2 hours. You are allowed one sheet of notes (letter-size paper, both sides). Calculators, the textbook, and additional notes are not allowed. Justify all your answers carefully.

Q1.
(a) Let A be a 2×2 matrix with $\operatorname{det} A=3$. Compute the determinant of the matrix

$$
B=\left[\begin{array}{llll}
A & 1 & 2 \\
& & 3 & 4 \\
0 & 0 & 0 & 5 \\
0 & 0 & 6 & 0
\end{array}\right]
$$

(b) Let C be a 3×3 matrix which is not invertible and let D be the 4×4 matrix

$$
D=\left[\begin{array}{lllll}
& & & 0 \\
& C & & 0 \\
& & & 0 \\
r & s & t & 1
\end{array}\right]
$$

where r, s, and t are real numbers. Explain why D is not invertible.
Q2. Find a basis for $\operatorname{Col} A$ and $\operatorname{Nul} A$ for the following matrix

$$
\left[\begin{array}{ccccccc}
1 & 0 & 2 & 0 & -1 & -1 & -3 \\
1 & 1 & 4 & 0 & -1 & 0 & -1 \\
1 & 0 & 2 & 1 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & -1 & 0 & -1
\end{array}\right]
$$

Q3. Let C be a 2×3 matrix such that $C \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^{2}$ and let D be a 3×2 matrix such that $D \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$.
a) Explain why the product $D C$ is never invertible.
b) Is the product $C D$ always invertible?

Q4. Let P_{2} denote the space of all polynomials of degree less than or equal to 2 .
a) Does the set $\mathcal{B}=\{(t-1)(t-2),(t+1)(t+2), t\}$ form a basis for P_{2} ?
b) The set $\mathcal{B}=\left\{t^{2}+t+1, t^{2}+2 t+1,3 t+1\right\}$ forms a basis for P_{2}. Find the coordinates of $q(t)=3 t^{2}+t-1$ in the \mathcal{B} basis.

Q5 a) Let V denote the vector space of all 2 by 2 matrices. Is the map $T: V \rightarrow \mathbb{R}$ given by $T(A)=\operatorname{det} A$ a linear transformation?
b) Let V be the set of all continuous functions f where $f(0)<f(1)$. Is V a vector space?
c) Let V be the set of all odd functions, that is $f(-x)=-f(x)$ for every real number x. Is V a vector space?

Q6. Consider the sphere of radius 1 centered at the origin in \mathbb{R}^{3}, whose volume is $\frac{4}{3} \pi$. We transform the sphere via a linear transformation whose matrix in the standard basis is given by

$$
A=\left[\begin{array}{ccc}
3 & 2 & 1 \\
1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right]
$$

What is the volume of the resulting shape?
What is $\operatorname{det} A^{9}$ for the above A ?

