Math 235 Practice Midterm 1.

Instructions: Exam time is 2 hours. You are allowed one sheet of notes (letter-size paper, both sides). Calculators, the textbook, and additional notes are *not* allowed. Justify all your answers carefully.

Q1.

(a) Compute the reduced row echelon form of the matrix

$$A = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 1 & 5 & -3 & 1 \\ -2 & -4 & 0 & -1 \\ 3 & 5 & 1 & 7 \end{bmatrix}$$

- (b) Is the matrix A invertible?
- (c) Which entries are pivot entries?
- (d) When solving the equation $A\mathbf{x} = \mathbf{b}$ with this A, which of the following are possible: there are no solutions, there is one unique solution, there are infinitely many solutions. Justify your answer.

Q2. Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & -3 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 3 \\ 1 \end{bmatrix}$.

- (a) Find the general solution of the equation $A\mathbf{x} = \mathbf{b}$. Write your solution in vector form.
- (b) Using your answer to part (a) or otherwise, find the general solution of the equation $A\mathbf{x} = \mathbf{0}$.
- (c) Does the equation $A\mathbf{x} = \mathbf{c}$ have a solution for every vector \mathbf{c} in \mathbb{R}^4 ? Justify your answer carefully.
- Q3. Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\7\\4 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1\\3\\6 \end{bmatrix}$$

(a) Are the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 linearly independent?

(b) Do the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ span \mathbb{R}^3 ?

Justify your answers carefully.

Q4.

(a) Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that projects onto the y-axis and then rotates clockwise by $\pi/4$ radians. Find the standard matrix of S. Is S one-to-one? Is S onto?

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation that maps $T(\mathbf{e}_1) = \begin{bmatrix} 1\\1\\7 \end{bmatrix}$ and $T(\mathbf{e}_2) = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$. Write the matrix corresponding to T. Is T one-toone? Is T onto?

Q5.

(a) Compute the inverse of the matrix

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 7 \\ -1 & 1 & 5 \end{bmatrix}$$

(b) Using your answer to part (a) or otherwise, solve the system of linear equations

x_1	+	x_2	+	$2x_3$	=	2
$2x_1$	+	$3x_2$	+	$7x_3$	=	3
$-x_1$	+	x_2	+	$5x_3$	=	5

Q6. Consider the equation BC(2A - 3X)DE = F for an unknown $n \times n$ matrix X. Assume that A, B, C, D, E, and F are all invertible $n \times n$ matrices.

- (a) Write a solution X in terms of A, B, C, D, E, and F. Is this solution unique? Explain why or why not.
- (b) Can we allow any of the matrices A, B, C, D, E, or F to be singular and still guarantee that a solution X exists? Justify your answer.