Math 235 Practice Final.

Instructions: Exam time is 2 hours. You are allowed one sheet of notes (letter-size paper, both sides). Calculators, the textbook, and additional notes are not allowed. Justify all your answers carefully.
(1) Write the matrix in the standard basis for the linear transformation T such that

$$
T\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
0
\end{array}\right] .
$$

(2) Compute determinant of the matrix:

$$
\left[\begin{array}{cccc}
1 & -1 & 2 & -2 \\
-1 & 2 & 1 & 6 \\
2 & 1 & 14 & 10 \\
-2 & 6 & 10 & 33
\end{array}\right] .
$$

(3) Let x be a real number and

$$
A=\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

Find the values of x such that A can be diagonalized as $A=P D P^{-1}$ and give the corresponding matrices P and D. For any value of x such that A cannot be diagonalized, explain what goes wrong.
(4) Find the complex eigenvalues and associated eigenvectors for the matrix

$$
A=\left(\begin{array}{cc}
1 & -37 \\
1 & 13
\end{array}\right)
$$

(5) Find the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{ccc}
0 & 2 & -1 \\
-1 & 2 & 0 \\
-1 & 2 & 0
\end{array}\right]
$$

(6) (a) Find a basis of the null space and a basis of the column space of the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 \\
3 & 3 & 3 & 3
\end{array}\right]
$$

(b) What are the eigenvalues of A ? (Hint: $\mathrm{Col} A$ is the range of the linear map $\mathbf{x} \mapsto A \mathbf{x}$.)
(c) Diagonalize A.
(7) Give, with explanation, the maximal and minimal possible ranks (which may be equal) of the following matrices:
(a) a 5×7 matrix
(b) a 3×5 matrix with a row of zeroes.
(c) a 4×4 matrix whose rows all sum to zero.
(8) Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
\frac{1}{10} \\
\frac{-1}{10} \\
\frac{7}{10} \\
\frac{-7}{10}
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
\frac{7}{10} \\
\frac{-7}{10} \\
\frac{-1}{10} \\
\frac{1}{10}
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right],
$$

Is the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ orthonormal? Justify your response.
Compute $\operatorname{proj}_{L} \mathbf{e}_{1}$ where L is the line spanned by \mathbf{v}_{1} and \mathbf{e}_{1} is the first standard unit vector.

* * *

