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1. Differentials and the canonical divisor

Picking up where we left off:

Definition 1.1. Let X be a nonsingular variety of dimension n over an algebraically closed
field. Then, the tangent sheaf of X is Hom(ΩX/k,OX), and the canonical sheaf of X is

ωX =
∧nΩX/k. This is an invertible sheaf, so coincides with L(D) for some divisor D. We call

this divisor the canonical divisor and denote it KX .
If X is projective, we define the geometric genus of X to be pg(X) = Γ(X,ωX).

While we do not have time to get into many details about the sheaf of differentials and
canonical divisor, they are incredibly important sheaves and divisors. They control topological
properties like the genus, deformation theory, singularities, and much much more. For example,
the following is true:

Theorem 1.2. If X and Y are birational projective nonsingular varieties, then pg(X) = pg(Y ).

Let’s compute the canonical divisor for at least one variety.

Example 1.3. Let X = P1
k. Then, X = U1 ∪ U2 = A1 ∪ A1. For simplicity, let x be the

coordinate on the first A1 and y the coordinate on the second, so on the intersection, y = 1/x.
Then, on U1, Ω is the module associated to k[x]dx and on U2 it is k[y]dy. On the overlap,

y = 1/x, so dy = −1/x2dx.
What sheaf is this? It is an invertible sheaf, such that the generator on one chart is −1/x2

times the generator on the other. Because this has a pole of order 2, this is precisely the sheaf
ΩX/k = ωX = O(−2) on P1. Furthermore, because there are no elements of Γ(U1,Ω) that are
regular (via this transition map) on U2, there are no global sections, so pg = Γ(X,O(−2)) = 0.

2. Riemann-Roch

Now, let’s combine everything we’ve been talking about in one very useful theorem.
Suppose X is a nonsingular projective variety over an algebraically closed field and D a divisor

on X. Let l(D) denote the dimension of the vector space Γ(X,L(D)) (equivalently, l(D) is the
dimension of the linear system |D|, plus 1). Thus, l(D) ‘counts’ the number of effective divisors
linearly equivalent to D.

Now suppose X is a curve.

Theorem 2.1. Riemann-Roch Let D be a divisor on a curve of genus g. Then,

l(D)− l(KX −D) = degD − g + 1.

The standard proof uses cohomology, so we will not prove this, but rather focus on many nice
applications. Note that because l(KX −D) ≥ 0, this implies

l(D) ≥ degD − g + 1.

First, an observation:

Lemma 2.2. If l(D) > 0, then degD ≥ 0. If l(D) > 0 and degD = 0, then D ∼ 0.
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Proof. If l(D) > 0, then there exists an effective divisor D0 linearly equivalent to D, and
degD = degD0, but degD0 ≥ 0 because D0 is effective.

If degD = degD0 = 0, then D is linearly equivalent to an effective divisor of degree 0, of
which there is only one: D0 = 0. □

Corollary 2.3. If degD < 0, then l(nD) = 0 for all n > 0, and if degD = 0, then l(nD) ̸= 0 if
and only if nD ∼ 0.

We can use the Riemann-Roch theorem to ask what happens when degD > 0.

Corollary 2.4. If degD > 0, then for n ≫ 0, l(nD) = n degD − g + 1 > 0.

Proof. For n ≫ 0, degKX − nD < 0, so l(KX − nD) = 0 □

It also tells us the degree of KX :

Corollary 2.5. The degree of the canonical divisor is degKX = 2g − 2.

Combining the previous facts about degree 0 divisors, we have:

Corollary 2.6. The canonical divisor on a genus 1 curve is ωX
∼= OX .

And, finally, it tells us:

Corollary 2.7. A divisor D on X is very ample if degD ≥ 2g + 1.

Proof. First, because degD ≥ 2g + 1, degKX − D ≤ 2g − 2 − (2g + 1) ≤ −3 < 0 so by
Riemann-Roch,

l(D) = degD − g + 1 ≥ g + 2.

Thus, D gives us a rational map ϕ : X → PN , where N ≥ g + 1. We would like to show ϕ is
an embedding. To do this, we need to show two things:

(1) for any p, q ∈ X, there exists a section s ∈ Γ(X,L(D)) such that s(p) = 0 but s(q) ̸= 0.
(This implies: ϕ(p) ̸= ϕ(q), so the map is injective topologically, and not all sections of
L(D) vanish at q, so the map ϕ is defined at all points q ∈ X.)

(2) for any p ∈ X, the set {s ∈ Γ(X,L(D)) | s ∈ mpLp} spans the vector space mpLp/m
2
pLp.

(This says: the sections ‘separate tangent vectors’, and implies that the mapOPn → ϕ∗OX

is surjective–we check this on stalks, and at a point p, this is just OPn,p → OX,p, but
by assumption the image of the maximal ideal in OPn,p generates mp/m

2
p, which implies

the map is surjective; see Hartshorne Lemma II.7.4 for details.)

So, let’s check. We know

l(D) = degD − g + 1 ≥ g + 2.

Suppose p and q are two points of X. Then, degD − p − q = degD − 2 ≥ 2g − 1, so
deg(KX − (D − p − q)) ≤ 2g − 2 − (2g − 1) = −1, so l(KX − (D − p − q)) = 0. So, by
Riemann Roch,

l(D − p− q) = degD − 2− g + 1.

Combining these two equations, we have l(D − p− q) = l(D)− 2. Similarly, computing with
D − p instead of D − p− q, one has l(D − p) = l(D)− 1 and l(D − p− q) = l(D − p)− 1.

The equality l(D − p) = l(D) − 1 means that there exists some global section of L(D) that
does not vanish at p. Indeed, any section that vanishes at p can be written as D′ + p, where
D′ ∈ L(D−p), by definition. Because l(D−p) < l(D), not every section in L(D) is of this form,
i.e. there is a section not vanishing at p. This shows the map determined by D from X → PN

is in fact a morphism.
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Now, suppose p ̸= q. Because l(D− p− q) = l(D− p)− 1, this implies that there is a section
D′ of D − p that does not vanish at q. So, there is a section of L(D) of the form D′ + p, which
necessarily vanishes at p, that does not vanish at q. This verifies condition (1).

Now, suppose p = q. Similar to the above computation, this implies that there is a section
vanishing at p (i.e. in mpLp) that does not vanish to order two (i.e. not in m2

pLp). So, because

mp/m
2
p has dimension 1, the section generates mpLp/m

2
pLp.

Therefore, the map induced by D is an embedding. □

Corollary 2.8. On P1, g = 0 so any divisor of positive degree is very ample.

Corollary 2.9. On any curve, if degD > 0, D is ample.

Proof. If degD > 0, then for n ≫ 0, deg nD ≥ 2g + 1, so nD is very ample. □

Example 2.10. Let’s use this to understand all genus 1 curves. BecauseKX = 0, for any divisor
D with degD > 0, we have l(K −D) = l(−D) = 0 because deg(−D) < 0. So, Riemann-Roch
says

l(D) = degD − g + 1 = degD.

First, this shows that a divisor of degree 1 or 2 cannot be very ample even though it has
positive degree: l(D) = 1 means the map induced by D is a map to P0, so not an embedding,
and l(D) = 2 means the map is to P1, but a genus 1 curve cannot be isomorphic to P1 because
they have different genera, so it is also not an embedding.

However, this says if degD = 3, the map is an embedding. So, there exists a closed embedding
ϕ : X → P2 such that ϕ∗O(1) = L(D). Because degD = 3, this implies that the hyperplane
section in P2 restricts to be a divisor of degree 3 on X, i.e. there are 3 intersection points of
a general hyperplane section and X. This implies that the image of X is defined by a cubic
equation in P2, so all genus 1 curves can be embedded as cubics in P2.
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