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1. Sheaves of Modules

Definition 1.1. Let (X,OX) be a ringed space. A sheaf of modules is a sheaf F on X
such that, for each open set U ⊂ X, the group F(U) is a OX(U) module such that the restric-
tions F(U) → F(V ) are compatible with the module structures via the ring homomorphism
O(U) → O(V ).

A morphism of OX -modules F and G is a morphism F → G such that F(U) → G(U) is a
homomorphism of modules.

Definition 1.2. An OX -module F is free if it isomorphic to a direct sum of copies of O. It
is locally free is there is an open cover X = ∪Ui such that F|Ui is free for each i. The rank
of a free sheaf is the number of copies of O, and the rank of a locally free sheaf on one of the
open sets Ui is the rank of F|Ui . If X is connected, the rank is the same everywhere, so it makes
sense to define the rank in general.

A locally free sheaf of rank 1 is called an invertible sheaf.

Definition 1.3. If F is an OX -module and f : X → Y is a morphism, then pushforward f∗F
is an OY -module via the morphism OY → f∗OX .

If G is an OY -module, then f−1G is a f−1OY module, but (exercise) there is a natural
morphism f−1OY → OX , and the pullback f∗G = f−1G ⊗f−1OY

OX is a OX module.

2. Invertible sheaves and divisors

Exercise 2.1. If L is an invertible sheaf on X, define L−1 = Hom(L,OX). Show that L−1 is
also an invertible sheaf. Show that the tensor product of two invertible sheaves is an invertible
sheaf. Show that L ⊗ L−1 ∼= OX .

Definition 2.2. For any scheme X, the Picard group of X is Pic X the set of invertible
sheaves on X modulo isomorphism. This is a group under ⊗.

We can associate to each Cartier divisor an invertible sheaf, as follows.

Definition 2.3. Let D = {Ui, fi} be a Cartier divisor. Let L(D) be the subsheaf of K defined
by taking L(D) to be the OX -module generated by f−1

i on Ui.

Exercise 2.4. Check that L(D) is well-defined, i.e. that f−1
i and f−1

j generate the same OX -
module on Ui ∩ Uj .

Proposition 2.5. Let X be a scheme.

(1) For any Cartier divisor D on X, the sheaf L(D) is an invertible sheaf on X. The
map D 7→ L(D) gives a 1-1 correspondence between the Cartier divisors and invertible
subsheaves of K.

(2) If D1 and D2 are Cartier divisors, then L(D1 −D2) ∼= L(D1)⊗ L(D2)
−1.

(3) L(D1) ∼= L(D2) if and only if D1 ∼ D2.

Proof. For (1), write D = {Ui, fi} and consider the map OUi → L(D)|Ui given by 1 7→ f−1
i . This

is an isomorphism, so L(D) is an invertible sheaf. Similarly, D can be recovered from L(D) by
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taking an open set where OUi
∼= L(D)|Ui and letting fi be the inverse of the generator. For any

invertible subsheaf of K, this gives a Cartier divisor D.
We leave (2) as an exercise.
For (3), by (2) it is sufficient to show that D = D1−D2 is principal if and only if L(D) ∼= OX .

But, if D = (f) for f ∈ K∗, then L(D) is globally generated by f−1 so the map O → L(D)
sending 1 to f−1 is an isomorphism. Similarly, if O ∼= L(D), the image of the generator 1 is an
element of K∗ so D is principal, generated by its inverse. □

Corollary 2.6. For any scheme X, the map CaCl(X) → Pic X sending a Cartier divisor D to
L(D) is an injective homomorphism.

Proposition 2.7. If X is integral, then this map is an isomorphism.

Proof. We just need to show that any invertible sheaf L is a subsheaf of K, and then the result
follows from our previous proposition.

Because X is integral, K is the constant sheaf with values K(X). Consider the sheaf L ⊗ K.
On any open set U where L|U ∼= O, this is just isomorphic to K. This says that X has an open
cover such that the restriction of L⊗K to each open set is the constant sheaf K. Because X is
irreducible, this implies that L ⊗ K must in fact be a constant sheaf (exercise!) so L ⊗ K ∼= K.
Therefore, the injective map L → L⊗K ∼= K shows that L is a subsheaf of K. □

Corollary 2.8. On a noetherian integral separated locally factorial scheme, we have

Cl X ∼= CaCl(X) ∼= Pic X.

Example 2.9. On Pn
k , we know Cl X ∼= Z generated by the hyperplane x0 = 0, so Pic X = Z

generated by the sheaf L(x0). This sheaf is denoted O(1).

3. Projective morphisms

Now, we will use invertible sheaves to define morphisms to projective space.

Example 3.1. On Pn, we have the invertible sheaf O(1). This has n global sections: x0, . . . , xn.
(These are all global sections of the sheaf because, thinking of it as a Cartier divisor, these are
the elements s for which s · 1/x0 is a section on all of the affine charts, so they glue together to
form a global section.)

In a seemingly different direction, these global sections are also the coordinates on Pn. In
general, taking a line bundle L on an integral scheme X with global sections {s0, . . . , sn}, we
get a map X 99K Pn by sending any point x ∈ X to [s0(x) : · · · : sn(x)], where si(x) is the
evaluation of the function si at x. This makes sense: for integral schemes, L ⊂ K, where K is
the function field of X, so the elements of L are rational functions on X.

Provided the sections don’t simultaneously vanish, this gives a morphism |L| : X → Pn.

The main focus of this section will be to explain the terminology associated to morphisms of
line bundles.

Proposition 3.2. Let A be a ring and let X be a scheme over A.

(1) If ϕ : X → Pn
A is a morphism over A, then L = ϕ∗O(1) is an invertible sheaf on X, with

global sections si = ϕ∗(xi) that generate L.
(2) Conversely, if {s0, . . . , sn} are global sections of an invertible sheaf L which generate L

(i.e. for every point x ∈ X, the stalk OX,x
∼= Lx is generated by the elements {si})

then there exists a unique morphism ϕ : X → Pn
A over A such that L ∼= ϕ∗O(1) and

si = ϕ∗(xi).
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