ALGEBRAIC GEOMETRY: FRIDAY, MAY 5

1. Sheaves of Modules

Definition 1.1. Let (X, \mathcal{O}_X) be a ringed space. A **sheaf of modules** is a sheaf \mathcal{F} on X such that, for each open set $U \subset X$, the group $\mathcal{F}(U)$ is a $\mathcal{O}_X(U)$ module such that the restrictions $\mathcal{F}(U) \to \mathcal{F}(V)$ are compatible with the module structures via the ring homomorphism $\mathcal{O}(U) \to \mathcal{O}(V)$.

A morphism of \mathcal{O}_X -modules \mathcal{F} and \mathcal{G} is a morphism $\mathcal{F} \to \mathcal{G}$ such that $\mathcal{F}(U) \to \mathcal{G}(U)$ is a homomorphism of modules.

Definition 1.2. An \mathcal{O}_X -module \mathcal{F} is **free** if it isomorphic to a direct sum of copies of \mathcal{O} . It is **locally free** is there is an open cover $X = \bigcup U_i$ such that $\mathcal{F}|_{U_i}$ is free for each *i*. The **rank** of a free sheaf is the number of copies of \mathcal{O} , and the **rank** of a locally free sheaf on one of the open sets U_i is the rank of $\mathcal{F}|_{U_i}$. If X is connected, the rank is the same everywhere, so it makes sense to define the rank in general.

A locally free sheaf of rank 1 is called an invertible sheaf.

Definition 1.3. If \mathcal{F} is an \mathcal{O}_X -module and $f: X \to Y$ is a morphism, then **pushforward** $f_*\mathcal{F}$ is an \mathcal{O}_Y -module via the morphism $\mathcal{O}_Y \to f_*\mathcal{O}_X$.

If \mathcal{G} is an \mathcal{O}_Y -module, then $f^{-1}\mathcal{G}$ is a $f^{-1}\mathcal{O}_Y$ module, but (exercise) there is a natural morphism $f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$, and the **pullback** $f^*\mathcal{G} = f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$ is a \mathcal{O}_X module.

2. Invertible sheaves and divisors

Exercise 2.1. If \mathcal{L} is an invertible sheaf on X, define $\mathcal{L}^{-1} = \mathcal{H}om(\mathcal{L}, \mathcal{O}_X)$. Show that \mathcal{L}^{-1} is also an invertible sheaf. Show that the tensor product of two invertible sheaves is an invertible sheaf. Show that $\mathcal{L} \otimes \mathcal{L}^{-1} \cong \mathcal{O}_X$.

Definition 2.2. For any scheme X, the **Picard group** of X is Pic X the set of invertible sheaves on X modulo isomorphism. This is a group under \otimes .

We can associate to each Cartier divisor an invertible sheaf, as follows.

Definition 2.3. Let $D = \{U_i, f_i\}$ be a Cartier divisor. Let $\mathcal{L}(D)$ be the subsheaf of \mathcal{K} defined by taking $\mathcal{L}(D)$ to be the \mathcal{O}_X -module generated by f_i^{-1} on U_i .

Exercise 2.4. Check that $\mathcal{L}(D)$ is well-defined, i.e. that f_i^{-1} and f_j^{-1} generate the same \mathcal{O}_X -module on $U_i \cap U_j$.

Proposition 2.5. Let X be a scheme.

- (1) For any Cartier divisor D on X, the sheaf $\mathcal{L}(D)$ is an invertible sheaf on X. The map $D \mapsto \mathcal{L}(D)$ gives a 1-1 correspondence between the Cartier divisors and invertible subsheaves of \mathcal{K} .
- (2) If D_1 and D_2 are Cartier divisors, then $\mathcal{L}(D_1 D_2) \cong \mathcal{L}(D_1) \otimes \mathcal{L}(D_2)^{-1}$.
- (3) $L(D_1) \cong L(D_2)$ if and only if $D_1 \sim D_2$.

Proof. For (1), write $D = \{U_i, f_i\}$ and consider the map $\mathcal{O}_{U_i} \to \mathcal{L}(D)|_{U_i}$ given by $1 \mapsto f_i^{-1}$. This is an isomorphism, so $\mathcal{L}(D)$ is an invertible sheaf. Similarly, D can be recovered from $\mathcal{L}(D)$ by

taking an open set where $\mathcal{O}_{U_i} \cong \mathcal{L}(D)|_{U_i}$ and letting f_i be the inverse of the generator. For any invertible subsheaf of \mathcal{K} , this gives a Cartier divisor D.

We leave (2) as an exercise.

For (3), by (2) it is sufficient to show that $D = D_1 - D_2$ is principal if and only if $\mathcal{L}(D) \cong \mathcal{O}_X$. But, if D = (f) for $f \in \mathcal{K}^*$, then $\mathcal{L}(D)$ is globally generated by f^{-1} so the map $\mathcal{O} \to \mathcal{L}(D)$ sending 1 to f^{-1} is an isomorphism. Similarly, if $\mathcal{O} \cong \mathcal{L}(D)$, the image of the generator 1 is an element of \mathcal{K}^* so D is principal, generated by its inverse.

Corollary 2.6. For any scheme X, the map $CaCl(X) \to Pic X$ sending a Cartier divisor D to $\mathcal{L}(D)$ is an injective homomorphism.

Proposition 2.7. If X is integral, then this map is an isomorphism.

Proof. We just need to show that any invertible sheaf \mathcal{L} is a subsheaf of \mathcal{K} , and then the result follows from our previous proposition.

Because X is integral, \mathcal{K} is the constant sheaf with values K(X). Consider the sheaf $\mathcal{L} \otimes \mathcal{K}$. On any open set U where $\mathcal{L}|_U \cong \mathcal{O}$, this is just isomorphic to \mathcal{K} . This says that X has an open cover such that the restriction of $\mathcal{L} \otimes \mathcal{K}$ to each open set is the constant sheaf \mathcal{K} . Because X is irreducible, this implies that $\mathcal{L} \otimes \mathcal{K}$ must in fact be a constant sheaf (exercise!) so $\mathcal{L} \otimes \mathcal{K} \cong \mathcal{K}$. Therefore, the injective map $\mathcal{L} \to \mathcal{L} \otimes \mathcal{K} \cong \mathcal{K}$ shows that \mathcal{L} is a subsheaf of \mathcal{K} .

Corollary 2.8. On a noetherian integral separated locally factorial scheme, we have

$$\operatorname{Cl} X \cong CaCl(X) \cong \operatorname{Pic} X.$$

Example 2.9. On \mathbb{P}_k^n , we know Cl $X \cong \mathbb{Z}$ generated by the hyperplane $x_0 = 0$, so Pic $X = \mathbb{Z}$ generated by the sheaf $\mathcal{L}(x_0)$. This sheaf is denoted $\mathcal{O}(1)$.

3. Projective morphisms

Now, we will use invertible sheaves to define morphisms to projective space.

Example 3.1. On \mathbb{P}^n , we have the invertible sheaf $\mathcal{O}(1)$. This has *n* global sections: x_0, \ldots, x_n . (These are all global sections of the sheaf because, thinking of it as a Cartier divisor, these are the elements *s* for which $s \cdot 1/x_0$ is a section on all of the affine charts, so they glue together to form a global section.)

In a seemingly different direction, these global sections are also the *coordinates* on \mathbb{P}^n . In general, taking a line bundle \mathcal{L} on an integral scheme X with global sections $\{s_0, \ldots, s_n\}$, we get a map $X \dashrightarrow \mathbb{P}^n$ by sending any point $x \in X$ to $[s_0(x) : \cdots : s_n(x)]$, where $s_i(x)$ is the evaluation of the function s_i at x. This makes sense: for integral schemes, $\mathcal{L} \subset \mathcal{K}$, where \mathcal{K} is the function field of X, so the elements of \mathcal{L} are rational functions on X.

Provided the sections don't simultaneously vanish, this gives a morphism $|\mathcal{L}|: X \to \mathbb{P}^n$.

The main focus of this section will be to explain the terminology associated to morphisms of line bundles.

Proposition 3.2. Let A be a ring and let X be a scheme over A.

- (1) If $\phi: X \to \mathbb{P}^n_A$ is a morphism over A, then $\mathcal{L} = \phi^* \mathcal{O}(1)$ is an invertible sheaf on X, with global sections $s_i = \phi^*(x_i)$ that generate \mathcal{L} .
- (2) Conversely, if $\{s_0, \ldots, s_n\}$ are global sections of an invertible sheaf \mathcal{L} which generate \mathcal{L} (i.e. for every point $x \in X$, the stalk $\mathcal{O}_{X,x} \cong \mathcal{L}_x$ is generated by the elements $\{s_i\}$) then there exists a unique morphism $\phi : X \to \mathbb{P}^n_A$ over A such that $\mathcal{L} \cong \phi^* \mathcal{O}(1)$ and $s_i = \phi^*(x_i)$.