
ALGEBRAIC GEOMETRY: WEDNESDAY, MAY 3

1. Cartier Divisors

So far, we have defined Weil divisors (linear combinations of closed subschemes of codimension
1) and Cartier divisors (global sections of K∗/O∗). Although these are defined quite differently,
in nice cases, the Weil divisors and the Cartier divisors coincide.

Proposition 1.1. Let X be an integral separated noetherian scheme that is locally factorial,
meaning that all local rings OX,x are unique factorization domains. Then, the group of Weil
divisors Div X is isomorphic to the group of Cartier divisors K∗/O∗(X). Furthermore, this
respects the principal divisors, so gives an isomorphism Cl X to CaCl(X).

Example 1.2. Any regular local ring is a UFD, so this statement applies for regular (‘nonsin-
gular’) noetherian separated schemes.

Corollary 1.3. By the proof of the previous proposition, we see that for any normal scheme
the Cartier divisors are isomorphic to the subgroup of locally principal Weil divisors, as claimed
at the beginning of the section.

So, on normal schemes (where Weil divisors can be defined), the Cartier divisors are a subset
of the Weil divisors. If our scheme is not regular or not locally factorial, they do not have to be
the same.

Example 1.4. For the quadric cone X = Spec k[x, y, z]/(xy − z2), the divisor Y = V (y, z) is
not (locally) principal, so is not Cartier. The class group is Z/2Z generated by Y , so in this
case, the group CaCl(X) = 0.

The last ‘type’ of divisor we will consider is an invertible sheaf. To define invertible sheaf, we
first have to define sheaves of modules.

2. Sheaves of Modules

Definition 2.1. Let (X,OX) be a ringed space. A sheaf of modules is a sheaf F on X
such that, for each open set U ⊂ X, the group F(U) is a OX(U) module such that the restric-
tions F(U) → F(V ) are compatible with the module structures via the ring homomorphism
O(U) → O(V ).

A morphism of OX -modules F and G is a morphism F → G such that F(U) → G(U) is a
homomorphism of modules.

Exercise 2.2. The kernel, cokernel, and image of a morphism of OX -modules is a OX -module.
The quotient sheaf of OX -modules is an OX -module. The sheaf of homomorphisms Hom(F ,G)
of OX -modules is an OX -module.

Definition 2.3. If F and G are sheaves of OX -modules, then the sheafification of the presheaf
U 7→ F(U) ⊗O(U) G(U) is called the tensor product and is denoted F ⊗ G. It is also an
OX -module.

Definition 2.4. An OX -module F is free if it isomorphic to a direct sum of copies of O. It
is locally free is there is an open cover X = ∪Ui such that F|Ui is free for each i. The rank
of a free sheaf is the number of copies of O, and the rank of a locally free sheaf on one of the
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open sets Ui is the rank of F|Ui . If X is connected, the rank is the same everywhere, so it makes
sense to define the rank in general.

A locally free sheaf of rank 1 is called an invertible sheaf.

The terminology ‘invertible sheaf’ has meaning: it will mean the sheaf is invertible in the
group of OX modules with group operation ⊗.

3. Invertible sheaves and divisors

Exercise 3.1. If L is an invertible sheaf on X, define L−1 = Hom(L,OX). Show that L−1 is
also an invertible sheaf. Show that the tensor product of two invertible sheaves is an invertible
sheaf. Show that L ⊗ L−1 ∼= OX .

With this exercise in hand, we can define the Picard group:

Definition 3.2. For any scheme X, the Picard group of X is Pic X the set of invertible
sheaves on X modulo isomorphism. This is a group under ⊗.

We can associate to each Cartier divisor an invertible sheaf, as follows.

Definition 3.3. Let D = {Ui, fi} be a Cartier divisor. Let L(D) be the subsheaf of K defined
by taking L(D) to be the OX -module generated by f−1

i on Ui.

Exercise 3.4. Check that L(D) is well-defined, i.e. that f−1
i and f−1

j generate the same OX -
module on Ui ∩ Uj .

Proposition 3.5. Let X be a scheme.

(1) For any Cartier divisor D on X, the sheaf L(D) is an invertible sheaf on X. The
map D 7→ L(D) gives a 1-1 correspondence between the Cartier divisors and invertible
subsheaves of K.

(2) If D1 and D2 are Cartier divisors, then L(D1 −D2) ∼= L(D1)⊗ L(D2)
−1.

(3) L(D1) ∼= L(D2) if and only if D1 ∼ D2.

Proof. For (1), write D = {Ui, fi} and consider the map OUi → L(D)|Ui given by 1 7→ f−1
i . This

is an isomorphism, so L(D) is an invertible sheaf. Similarly, D can be recovered from L(D) by
taking an open set where OUi

∼= L(D)|Ui and letting fi be the inverse of the generator. For any
invertible subsheaf of K, this gives a Cartier divisor D.

We leave (2) as an exercise.
For (3), by (2) it is sufficient to show that D = D1−D2 is principal if and only if L(D) ∼= OX .

But, if D = (f) for f ∈ K∗, then L(D) is globally generated by f−1 so the map O → L(D)
sending 1 to f−1 is an isomorphism. Similarly, if O ∼= L(D), the image of the generator 1 is an
element of K∗ so D is principal, generated by its inverse. □

Corollary 3.6. For any scheme X, the map CaCl(X) → Pic X sending a Cartier divisor D to
L(D) is an injective homomorphism.

Proposition 3.7. If X is integral, then this map is an isomorphism.

We will prove this next time!

Corollary 3.8. On a noetherian integral separated locally factorial scheme, we have

Cl X ∼= CaCl(X) ∼= Pic X.

Example 3.9. On Pn
k , we know Cl X ∼= Z generated by the hyperplane x0 = 0, so Pic X = Z

generated by the sheaf L(x0). This sheaf is denoted O(1).
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