ALGEBRAIC GEOMETRY: FRIDAY, APRIL 28

1. DIVISORS

In what follows, we assume all schemes are noetherian integral separated schemes that are regular in codimension 1.

Definition 1.1. DivX is the free abelian group generated by the prime divisors (codimension 1 irreducible closed sets) of X.

If $f \in K(X)^*$ is any rational function on X, then the **divisor of** f is the divisor in DivX

$$(f) = \sum v_Y(f)Y.$$

Any divisor that equals (f) for some $f \in K^*$ is called a **principal divisor**.

The **class group** of X, denoted Cl(X), is the group DivX modulo the subgroup of principal divisors. If D_1, D_2 are elements of DivX, we write $D_1 \sim D_2$ if they have the same image in Cl(X).

Last time, we looked at the class groups of \mathbb{A}^n and \mathbb{P}^n :

Proposition 1.2. Let A be a noetherian integral domain. Then, A is a UFD if and only if X = Spec A is normal and Cl(X) = 0.

Corollary 1.3. Because $A = k[x_1, \ldots, x_n]$ is a UFD, $\mathbb{A}^n = \text{Spec } A$ has Cl(X) = 0.

Proposition 1.4. Let $X = \mathbb{P}_k^n$. For any $D \in \text{Div}(X)$, $D = \sum n_i Y_i$ where each Y_i is a hypersurface of degree d_i , and we define $\deg D := \sum n_i d_i$. Let H be the hyperplane $(x_0 = 0)$. Then:

(1) For any $f \in K^*$, $\deg(f) = 0$.

(2) For any $D \in Div(X)$, if deg D = d, then $D \sim dH$.

(3) The function deg : $Cl(X) \to \mathbb{Z}$ is an isomorphism.

Now, we will use these to understand class groups of other varieties.

Proposition 1.5. Let X satisfy the assumption at the beginning of the section, $Z \subset X$ a proper closed subset, and U = X - Z. Then,

- (1) There is a surjective homomorphism $\operatorname{Cl} X \to \operatorname{Cl} U$ given by $D = \sum n_i Y_i \mapsto \sum n_i (Y_i \cap U)$ (ignoring any $Y_i \cap U$ that is empty)
- (2) If $\operatorname{codim}_X Z \ge 2$, then $\operatorname{Cl} X \to \operatorname{Cl} U$ is an isomorphism.
- (3) If Z is irreducible of codimension 1, then there is an exact sequence

$$\mathbb{Z} \to \mathrm{Cl} X \to \mathrm{Cl} U \to 0$$

where the first map sends 1 to $1 \cdot Z$.

Proof. For (1), the map on Div is well defined because any prime divisor Y on X restricts to either a prime divisor on U or $U \cap Y$ is empty. For $f \in K^*$, $(f) = \sum n_i Y_i$, then f is also a rational function on U and $(f)_U = \sum n_i (Y_i \cap U)$ so the image of a principal divisor is principal. Therefore, the map on ClX is well-defined. Also, every prime divisor on U is the restriction of its closure in X, so the map is surjective.

For (2), this follows because Div and Cl were defined by generic points of codimension 1 subsets, so removing subsets of codimension 2 does not change the definitions.

Finally, for (3), we consider ker $\operatorname{Cl} X \to \operatorname{Cl} U$. This only consists of divisors whose support is contained in Z, so if Z is irreducible, the kernel is just generated by $1 \cdot Z$.

We can use this proposition to understand the class group of several other varieties:

Example 1.6. Let $X = \mathbb{P}^2$ and Z be an irreducible plane curve of degree d. Then, from the previous two propositions, $\operatorname{Cl}(X - Z) = \mathbb{Z}/d\mathbb{Z}$.

Example 1.7. Let X = Spec A where $A = k[x, y, z]/(xy - z^2)$. Graphing this (or using some previous exercises), X is a cone in \mathbb{A}^3 . Specifically, X is the cone over the conic $xy - z^2$ in \mathbb{P}^2 .

We will show that $\operatorname{Cl} X = \mathbb{Z}/2\mathbb{Z}$. Let Y be a ruling of the cone, Y = V(y, z). Then, Y is a prime divisor, so by the previous proposition, there is an exact sequence

$$\mathbb{Z} \to \mathrm{Cl}X \to \mathrm{Cl}X - Y \to 0.$$

Furthermore, we can understand $\operatorname{Cl}(X - Y)$: notice that, set theoretically, Y is the closed subset V(y) (because y = 0 implies that $z^2 = 0$, so the points of V(y) and Y are the same. Also, $(y) = 2 \cdot Y$: at the generic point p of Y (which is all we use to define the divisor), the local ring is $\mathcal{O}_{X,p} = k[x, y, z]/(xy - z^2)_{(y,z)}$. So, we invert everything outside of (y, z), and the maximal ideal consists of (the image of) functions in the ideal (y, z). Here, the maximal ideal m is generated by just z, i.e. m = (z) because x is invertible, so $y \in (z)$. Therefore, $(y) = 2 \cdot Y$ as y = 0 implies $z^2 = 0$, and z^2 vanishes to order 2 in the maximal ideal. This says that $2 \cdot Y$ is principal, so $2 \cdot Y \sim 0 \in \operatorname{Cl} X$.

Also, because X - Y is also the complement of (y) in X, we have X - Y = X - V(y), and $X - V(y) = D(y) = \text{Spec } A_y$. Therefore,

$$X - Y = \text{Spec } k[x, y, z]/(xy - z^2)_y = \text{Spec } k[x, y, y^{-1}, z]/(xy - z^2).$$

Because y is invertible in this ring, we can eliminate x and conclude

$$X - Y = \operatorname{Spec} k[y, y^{-1}, z],$$

which is a UFD, so Cl(X - Y) = 0.

So, to complete the proof that $\operatorname{Cl} X = \mathbb{Z}/2\mathbb{Z}$, it suffices to show that $Y \not\sim 0 \in \operatorname{Cl} X$. Because X is normal (exercise!) it suffices to show that (y, z) is not a principal ideal in A. (This uses the algebraic proof of the UFD proposition: roughly, A is a UFD if and only if every prime ideal of height 1 is principal, and if this prime ideal is not principal, then it is a nontrivial element in $\operatorname{Cl} X$.) We leave this as an algebra exercise.

What this example is hinting at is that *singular* varieties have interesting (local) class groups. We will come back to this.

We can prove several other results in this direction.

Example 1.8. If X satisfies our main assumption, then so does $X \times \mathbb{A}^1$, and $\operatorname{Cl} X \cong \operatorname{Cl}(X \times \mathbb{A}^1)$.

Example 1.9. Let $X = V(xy - zw) \subset \mathbb{P}^3$. Then, $\operatorname{Cl} X \cong \mathbb{Z} \times \mathbb{Z}$. The generators of the class group are the two rulings of the surface. Try this as an exercise, using the exact sequence above with respect to the closed subset Z that is one of the rulings and the previous example that $\operatorname{Cl} Y \cong \operatorname{Cl}(Y \times \mathbb{A}^1)$ (here: the complement of one ruling should be a ruling $\times \mathbb{A}^1$...)

The key in the previous example/exercise is to define a map $\pi^* : \operatorname{Cl}\mathbb{P}^1 \to \operatorname{Cl}\mathbb{P}^1 \times \mathbb{P}^1$ by 'pullback': consider either projection $\pi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$, and for any divisor $D = \sum n_i Y_i$ on \mathbb{P}^1 , let $\pi^*D = \sum n_i \pi^{-1}Y_i$. Then, show that $\operatorname{Cl}\mathbb{P}^1 \times \mathbb{P}^1$ is $\pi_1^*\operatorname{Cl}\mathbb{P}^1 \oplus \pi_2^*\operatorname{Cl}\mathbb{P}^1 = \mathbb{Z} \oplus \mathbb{Z}$. This allows us to define a 'multidegree' of any divisor on $\mathbb{P}^1 \times \mathbb{P}^1$: we think of divisors as $(a, b), a, b \in \mathbb{Z}$, where a is the degree of the divisor pulled back from the first \mathbb{P}^1 and b the degree from the second.