ALGEBRAIC GEOMETRY: WEDNESDAY, APRIL 26

1. Divisors

For this section, we will assume that our schemes are regular in codimension 1 , i.e if $x \in X$ is the generic point of a codimension 1 subscheme, then \mathcal{O}_{x} is regular. If X is a nonsingular variety, all local rings \mathcal{O}_{x} are regular, so X satisfies this condition. More generally, if X is a noetherian normal scheme, then \mathcal{O}_{x} is an integrally closed domain of dimension 1 , which is regular.

So, in what follows, we assume all schemes are noetherian integral separated schemes that are regular in codimension 1.
Definition 1.1. A prime divisor on a scheme X is an integral closed subscheme of codimension 1. We define $\operatorname{Div} X$ to be the free abelian group generated by all prime divisors.

A Weil divisor is an element $D=\sum n_{i} Y_{i} \in \operatorname{Div} X$. By definition, each Y_{i} is a prime divisor and each n_{i} is an integer such that only finitely many n_{i} are nonzero.

If $n_{i} \geq 0$ for all i, then we say D is effective.
If Y is any prime divisor, let y be its generic point, so the ring $\mathcal{O}_{X, y}$ is a discrete valuation ring with associated valuation v_{Y} and quotient field K. For any $f \in K^{*}$ (which defines a nonzero rational function on X), $v_{Y}(f) \in \mathbb{Z}$, and if $v_{Y}(f)=n>0$, then we say f has a zero of order n along Y, and if $v_{Y}(f)=-n<0$, we say f has a pole of order n along Y.

Definition 1.2. If $f \in K^{*}$ is any rational function on X, then the divisor of f is the divisor in $\operatorname{Div} X$

$$
(f)=\sum v_{Y}(f) Y
$$

Any divisor that equals (f) for some $f \in K^{*}$ is called a principal divisor.
Definition 1.3. The class group of X, denoted $\mathrm{Cl}(X)$, is the group $\operatorname{Div} X$ modulo the subgroup of principal divisors. If D_{1}, D_{2} are elements of $\operatorname{Div} X$, we write $D_{1} \sim D_{2}$ if they have the same image in $\mathrm{Cl}(X)$.

Exercise 1.4. Prove that, on \mathbb{A}^{1}, every element of $\operatorname{Div} X$ is principal. (Possible hint: write down the rational function that gives you the divisor?)

More generally, we have the following proposition. (The proof is purely algebraic, so we omit it.)
Proposition 1.5. Let A be a noetherian integral domain. Then, A is a UFD if and only if $X=\operatorname{Spec} A$ is normal and $\mathrm{Cl}(X)=0$.

Corollary 1.6. Let $X=\mathbb{A}^{n}$. Then, $X=\operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right]$ which is a UFD, so $\operatorname{Cl}(X)=0$.
Let's briefly think about $X=\mathbb{P}^{1}$. What is $\mathrm{Cl}(X)$? First, what are the regular functions? We know, if X has coordinates x, y, the rational functions on X are just $k(x / y)$, because this is the quotient field of $\mathcal{O}_{X, p}$ for any point $p \in X$. But, certainly $x=0$ is a closed subscheme of X ! It turns out that there is no principal divisor that has this image in $\operatorname{Div} X$! The problem is essentially that, if you try $f=x / y$, then $(f)=(x=0)-(y=0)$. So, we will see that $\mathrm{Cl}(X)$ is not zero.

Proposition 1.7. Let $X=\mathbb{P}_{k}^{n}$. For any $D \in \operatorname{Div}(X), D=\sum n_{i} Y_{i}$ where each Y_{i} is a hypersurface of degree d_{i}, and we define $\operatorname{deg} D:=\sum n_{i} d_{i}$. Let H be the hyperplane $\left(x_{0}=0\right)$. Then:
(1) For any $f \in K^{*}, \operatorname{deg}(f)=0$.
(2) For any $D \in \operatorname{Div}(X)$, if $\operatorname{deg} D=d$, then $D \sim d H$.
(3) The function $\operatorname{deg}: \mathrm{Cl}(X) \rightarrow \mathbb{Z}$ is an isomorphism.

Proof. Let $S=k\left[x_{0}, \ldots, x_{n}\right]$ be the coordinate ring of X. If $g \in S_{d}$ is homogeneous of degree d, then we can factor g as $g=g_{1}^{n_{1}} \ldots g_{r}^{n_{r}}$ where $Y_{i}=V\left(g_{i}\right)$ is an integral closed subscheme of codimension 1. We define the divisor of g to be $(g)=\sum n_{i} Y_{i}$. If $\operatorname{deg} g_{i}=d_{i}$, then $\operatorname{deg} Y_{i}=d_{i}$, so $\operatorname{deg}(g)=\sum n_{i} d_{i}=d$. In other words, this definition of degree of divisor coincides with the degree of the defining polynomial.

If $f \in K^{*}$, then $f=g / h$ where g and h are homogeneous functions of the same degree, and $(f)=(g)-(h)$, so $\operatorname{deg}(f)=\operatorname{deg}(g)-\operatorname{deg}(h)=0$ because f and g have the same degree.

If $D \in \operatorname{Div} X$ has degree d, then we may write $D=D_{1}-D_{2}$ where D_{1} and D_{2} are effective divisors of degrees d_{1} and d_{2} such that $d_{1}-d_{2}=d$. Any effective divisor can be written (g) for some homogeneous $g \in S$ because irreducible hypersurfaces in \mathbb{P}^{n} correspond to vanishing of principal ideals, and any effective divisor is a formal combination of these (so is a product of powers of $\left.g_{i} \in S\right)$. So, if $D_{1}=\left(g_{1}\right)$ and $D_{2}=\left(g_{2}\right)$, then $f=g_{1} / x_{0}^{d} g_{2}$ is homogeneous of degree 0 and

$$
(f)=\left(g_{1}\right)-\left(g_{2}\right)-d\left(x_{0}\right)=D_{1}-D_{2}-d H=D-d H
$$

Therefore, $D-d H$ is principal so $D \sim d H$.
Finally, because any $D \in \operatorname{Div} X$ is equivalent to $d H$ in $\mathrm{Cl} X$ and $\operatorname{deg} H=1$, we have $\operatorname{Cl}(X) \cong \mathbb{Z}$.

