
ALGEBRAIC GEOMETRY: MONDAY, APRIL 24

1. Morphisms

The conclusion of the section on separated/proper/projective morphisms:

Exercise 1.1. Show that the image of the functor t : Vark → Schk taking a variety V to the
set of closed subsets t(V ) is exactly the set of integral quasi-projective schemes over k.

Hint: use the affine description of t–if V is an affine variety with coordinate ring A, then
t(V ) = Spec A–to show that for any variety V , t(V ) is an integral quasi-projective scheme.
Then, show that, if Y is any integral (quasi-)projective scheme over k, so Y ⊂ Pn

k , the set V of
closed points of Y is a quasi-projective variety (a closed set of an open subvariety of the variety
Pn
k). Comment from class: this is using k algebraically closed!

Motivated by the previous exercise, we finally define a variety in the category of schemes.

Definition 1.2. A variety is an integral separated scheme of finite type over k. A complete
variety is a proper integral scheme over k.

2. Divisors

Next, we move on to studying divisors, which are codimension one subvarieties (or sub-
schemes), which capture much of the intrinsic geometry of the variety!

If you are following along in Hartshorne, we are (temporarily) skipping Section 5. We will
come back to it, but will introduce divisors (Section 6) first.

For this section, we will assume that our schemes are regular in codimension 1, i.e if x ∈ X is
the generic point of a codimension 1 subscheme, then Ox is regular. If X is a nonsingular variety,
all local rings Ox are regular, so X satisfies this condition. More generally, if X is a noetherian
normal scheme, then Ox is an integrally closed domain of dimension 1, which is regular.

So, in what follows, we assume all schemes are noetherian integral separated schemes that are
regular in codimension 1.

Definition 2.1. A prime divisor on a schemeX is an integral closed subscheme of codimension
1. We define DivX to be the free abelian group generated by all prime divisors.

A Weil divisor is an element D =
∑

niYi ∈ DivX. By definition, each Yi is a prime divisor
and each ni is an integer such that only finitely many ni are nonzero.

If ni ≥ 0 for all i, then we say D is effective.
If Y is any prime divisor, let y be its generic point, so the ring OX,y is a discrete valuation ring

with associated valuation vY and quotient field K. For any f ∈ K∗ (which defines a nonzero
rational function on X), vY (f) ∈ Z, and if vY (f) = n > 0, then we say f has a zero of order n
along Y , and if vY (f) = −n < 0, we say f has a pole of order n along Y .

This is best motivated with the case of curves.

Example 2.2. Suppose X = A1 = Spec C[t]. Then, the codimension 1 points of X are just
the closed points a ∈ C, which correspond to the maximal ideals (t − a) ⊂ C[t]. Suppose Y is
the origin (the point a = 0, or maximal ideal (t)) so the local ring OX,y = k[t](t). The quotient
field is C(t) and the associated valuation just counts the order of vanishing of t. To be precise:
let f ∈ C(t) be any function and write f = p(t)/q(t) where p, q are polynomials. Let n be the
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maximal integer such that tn divides f , meaning f/tn = p′(t)/q′(t) and t does not divide q′(t)
(in other words, p′(t)/q′(t) ∈ k[t](t)). Then, the valuation is defined to be vY (f) = n.

We’ll use some specific functions to make this clear: if f = t3/(3 − 2t), then vY (f) = 3. If
g = t2(2− 4t)/t3, then vY (g) = −1.

The terminology zeros and poles is used because that’s literally what the valuation is counting
in this case.

In the case above, f = t3/(3 − 2t) = t3(1/(3 − 2t)) =: tf ′. The function f ′ is in k[t](t), so is
regular near the point t = 0, and it makes sense to say that f vanishes to order 3 near t = 0.
Similarly, g = (1/t)g′ where g′ ∈ k[t](t), so g′ is regular near t = 0, but g has a simple pole at
t = 0.

Lemma 2.3. If f ∈ K∗ is any nonzero rational function on X, then vY (f) = 0 for all but
finitely many prime divisors Y .

Proof. Let U = Spec A ⊂ X be an affine open subset where f is regular and Z = X − U .
Because X is noetherian, finitely many prime divisors Y are contained in Z, so it suffices to
prove that there are only finitely many prime divisors in U with vY (f) ̸= 0. Because f is regular
along U , vY (f) ≥ 0, and vY (f) > 0 if and only if Y is contained in the closed subset V (I),
where I = (f) ⊂ A. Because f ̸= 0, this is a proper closed subset, so contains only finitely many
irreducible subsets of codimension 1. □

With the lemma in hand, it makes sense to define a generalization of the earlier example:

Definition 2.4. If f ∈ K∗ is any rational function on X, then the divisor of f is the divisor
in DivX

(f) =
∑

vY (f)Y.

Any divisor that equals (f) for some f ∈ K∗ is called a principal divisor.

By properties of valuations, (f/g) = (f) − (g), so this is often something we can readily
compute.

Example 2.5. Let f = t3/(3− 2t) ∈ K∗ where X = A1. Then, (f) = 3(t = 0)− (t = 3/2).
Let g = t2(2− 4t)/t3 ∈ K∗. Then, (g) = (t = 1/2)− (t = 0).

Exercise 2.6. The function K∗ → DivX given by f 7→ (f) is a group homomorphism. By
definition, the image is the set of principal divisors.

Definition 2.7. The divisor class group of X, denoted Cl(X), is the group DivX modulo the
subgroup of principal divisors.
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