ALGEBRAIC GEOMETRY: FRIDAY, APRIL 21

1. Projective Morphisms

Definition 1.1. Let Y be a scheme. We define projective n-space over Y to be the scheme $\mathbb{P}_{Y}^{n}=\mathbb{P}_{\mathbb{Z}}^{n} \times{ }_{\text {Spec } Z} Y$. By definition of the fiber product, there is a natural projection map $\mathbb{P}_{Y}^{n} \rightarrow Y$.

Definition 1.2. A morphism $f: X \rightarrow Y$ is projective if there exists some n such that f factors as $X \rightarrow \mathbb{P}_{Y}^{n} \rightarrow Y$, where the first map is a closed immersion and the second map is the natural projection. A morphism $f: X \rightarrow Y$ is quasi-projective if it factors into an open immersion $X \rightarrow X^{\prime}$ followed by a projective morphism $X^{\prime} \rightarrow Y$.

Example 1.3. Let k be a field and S a graded ring with $S_{0}=k$ and such that S is finitely generated as a k-algebra by S_{1}. (Example: $S=k\left[x_{0}, \ldots, x_{n}\right]$.) Then, the natural map Proj $S \rightarrow$ Spec k is projective: by hypothesis, $S=k\left[x_{0}, \ldots, x_{n}\right] / I$ for some ideal I, so if $S^{\prime}=k\left[x_{0}, \ldots, x_{n}\right]$, there is a surjective homomorphism $S^{\prime} \rightarrow S$, so a closed immersion Proj $S \rightarrow \operatorname{Proj} S^{\prime}=\mathbb{P}_{k}^{n}$, which the morphism Proj $S \rightarrow$ Spec k factors through.

In particular, \mathbb{P}_{k}^{n} is projective over Spec k.
Finally, we conclude with:
Theorem 1.4. A projective morphism of noetherian schemes is proper. A quasi-projective morphism of noetherian schemes is of finite type and separated.

Proof. By the corollary of the valuative criterion, it is sufficient to prove that $\mathbb{P}_{\mathbb{Z}}^{n} \rightarrow$ Spec \mathbb{Z} is proper (any projective morphism factors as a closed immersion and a base change of this morphism, which will be proper if morphism is).

First, note that $\mathbb{P}_{\mathbb{Z}}^{n}=\cup D_{+}\left(x_{i}\right)$, where $D_{+}\left(x_{i}\right)=\operatorname{Spec} \mathbb{Z}\left[x_{0} / x_{i}, \ldots, x_{n} / x_{i}\right]$, and each of the restricted morphisms Spec $\mathbb{Z}\left[x_{0} / x_{i}, \ldots, x_{n} / x_{i}\right] \rightarrow$ Spec \mathbb{Z} is finite type, so $\mathbb{P}_{\mathbb{Z}}^{n} \rightarrow$ Spec \mathbb{Z} is of finite type. Now, we use the valuative criterion. Suppose we have a diagram

Let ξ_{1} be the image of the unique point of U in X. By induction, we may assume that ξ_{1} is not contained in any of the hyperplanes $V\left(x_{i}\right) \subset \mathbb{P}_{\mathbb{Z}}^{n}$, because each $V\left(x_{i}\right) \cong \mathbb{P}^{n-1}$, so we assume $\xi_{1} \in \cap D_{+}\left(x_{i}\right)$ and hence all x_{i} / x_{j} are regular functions at ξ_{1}, so $x_{i} / x_{j} \in \mathcal{O}_{\xi_{1}}$ for all i, j.

The morphism $U \rightarrow X$ corresponds to an inclusion of fields $k\left(\xi_{1}\right) \subset K$. Let $f_{i j} \in K$ be the image of x_{i} / x_{j} under this inclusion. Because R is a valuation ring, there is an associated (totally ordered) abelian group G and a valuation $v: K \rightarrow G$ with $R=\{x \in K \mid v(x) \geq 0\}$. Let $g_{i}=v\left(f_{i 0}\right)$ for each i, and choose j such that $g_{j}=\min \left\{g_{i} \mid 0 \leq i \leq n\right\}$. Then, $g_{i}-g_{j}=v\left(f_{i j}\right) \geq 0$ for each i, so $f_{i j} \in R$ for each i. Therefore, there is a homomorphism $\mathbb{Z}\left[x_{0} / x_{j}, \ldots, x_{n} / x_{j}\right] \rightarrow R$ given by $x_{i} / x_{j} \rightarrow f_{i j}$ (compatible with $k\left(\xi_{1}\right) \rightarrow K$ by definition), so there exists a morphism $T \rightarrow D_{+}\left(x_{j}\right)$, which composed with the inclusion $D_{+}\left(x_{j}\right) \rightarrow \mathbb{P}_{\mathbb{Z}}^{n}$ gives the required morphism $T \rightarrow \mathbb{P}_{\mathbb{Z}}^{n}$.

To complete the proof, we leave as an exercise to show this morphism is unique.

Example 1.5. As a consequence, the previous example $\mathbb{P}_{k}^{n} \rightarrow$ Spec k (or more generally Proj $S \rightarrow$ Spec k where S is a graded ring finitely generated over k in degree 1) is a proper morphism.

