ALGEBRAIC GEOMETRY: FRIDAY, APRIL 14

1. Separated and Proper Morphisms

We will start with the proof of the valuative criterion.

Exercise 1.1. Prove the following:

If X is an integral scheme, then there exists a generic point ξ on X, and $\mathcal{O}_{X,\xi}$ is a field. This is called the *function field* of X. If $X = \operatorname{Spec} A$, then $\mathcal{O}_{X,\xi} \cong \operatorname{Frac}(A)$. There is a natural map $A \to \operatorname{Frac}(A)$ which corresponds to an inclusion of schemes $\operatorname{Spec} \operatorname{Frac} A \to \operatorname{Spec} A$. Because $\operatorname{Frac}(A) = (A - \{0\})^{-1}A$, there is only one prime ideal $\operatorname{Frac} A$ and hence only one point of $\operatorname{Spec} \operatorname{Frac} A$, and its image in $\operatorname{Spec} A$ is the generic point $\{(0)\}$.

Proposition 1.2. Let $f : X \to Y$ be a morphism of schemes and suppose X is noetherian. Then, f is separated if and only if for all valuation rings R with fraction field K and natural inclusion $U = \text{Spec } K \to T = \text{Spec } R$ with morphisms $U \to X$ and $T \to Y$ such that

commutes, there is at most one morphism $T \to X$ making the following diagram commute

The proof will be divided into three steps.

Step 1.

Lemma 1.3. Let R be a valuation ring of a field K. Let T = Spec R and U = Spec K. A morphism from U to a scheme X is equivalent to a point $x_1 \in X$ and an inclusion of fields $k(x_1) \subset K$. A morphism from T to a scheme X is equivalent to two points $x_0, x_1 \in X$ with $x_0 \in \overline{\{x_1\}}$ and an inclusion $k(x_1) \subset K$ such that R dominates $\mathcal{O}_{\overline{\{x_1\}}, x_0}$, where $\overline{\{x_1\}}$ is taken to have the reduced induced structure as a subscheme of X.

Remark 1.4. As a reminder, if R and S are local rings, we says R dominates S if R contains S and the maximal ideal of R contains the maximal ideal of S.

Proof. Because U is a one-point scheme, a morphism $f: U \to X$ is a point $x_1 \in X$ (the image of U) and a local homomorphism from $\mathcal{O}_X \to f_*\mathcal{O}_U$. By definition of $f_*\mathcal{O}_U$, this is necessarily the zero map at any point outside x_1 , so we just need a local homomorphism $\mathcal{O}_{X,x_1} \to K$ (because K is the structure sheaf of \mathcal{O}_U). By definition of $k(x_1)$, this is a nonzero map $k(x_1) \to K$ between fields, so an inclusion $k(x_1) \subset K$.

For the second statement, let t_0 be the closed point of T and t_1 be the generic point. If $f: T \to X$ is a morphism, let $x_0 = f(t_0)$ and $x_1 = f(t_1)$. Since T is reduced, the image factors through $Z = \overline{\{x\}}$ (exercise!), and because Z is reduced and irreducible, its function field $\mathcal{O}_{Z,x_1} = k(x_1)$, so the natural map on stalks of the structure sheaf gives an inclusion $k(x_1) \subset K$. On the closed point, we have the local homomorphism $\mathcal{O}_{Z,x_0} \to R$ compatible with

 $k(x_1) \subset K$ (induced by taking fraction fields) so R dominates \mathcal{O}_{Z,x_0} . On the other hand, given x_0, x_1 and $k(x_1) \subset K$ such that R dominates \mathcal{O} , the inclusion $\mathcal{O} \to R$ gives a map on Specs $T \to \text{Spec } \mathcal{O}$, and composing the natural map Spec $\mathcal{O} \to X$ from including x_0 into X, we get a map $T \to X$.

Step 2.

We used the following notion in the previous step, and will use it again below.

Definition 1.5. A point $x_0 \in X$ is a specialization of $x_1 \in X$ if $x_0 \in \overline{\{x_1\}}$.

Lemma 1.6. If $f : X \to Y$ is a quasi-compact morphism of schemes, then $f(X) \subset Y$ is closed if and only if it is stable under specialization.

Proof. If f(X) is closed, then for any point $y_1 \in f(X)$, $\overline{\{y_1\}} \subset f(X)$, so any specialization of y_1 is also in f(X). This proves one implication.

Now, suppose f(X) is closed under specialization. Because closedness depends only on the reduced structure, we may assume both X and Y are reduced. Also, to prove f(X) is closed, it suffices to show $f(X) = \overline{f(X)}$, so we can replace Y with $\overline{f(X)}$ (with reduced induced structure). In other words, assume $\overline{f(X)} = Y$. Now, let $y \in \overline{f(X)}$. We must show $y \in f(X)$. By considering a neighborhood of $y \in Y$, we may assume that Y is affine, and therefore (because f is quasi-compact), $f^{-1}(Y) = \bigcup_{i=1}^{n} X_i$ where each X_i is affine. Because $y \in Y$ and the union is finite, $y \in \overline{f(X_i)}$ for some i. Let $Y_i = \overline{f(X_i)}$ with reduced induced structure, which is a closed subset of the affine scheme Y, so is also affine (and reduced by assumption).

Summarizing the set-up, we have $X_i = \text{Spec } A$, $Y_i = \text{Spec } B$ with B reduced, such that $y \in Y_i$ and $X_i \to Y_i$ is dominant. This is equivalent to an injective ring map $B \to A$ and prime ideal $p \subset B$ (corresponding to the point y). By Zorn's lemma, minimal prime ideals exist, so there exists a minimal prime ideal p' of B contained in p, which corresponds to a point y' such that y is a specialization of y'. If we can show that $y' \in f(X_i)$, then because it is stable under specialization, that will imply $y \in f(X_i)$, as desired.

So, to conclude the proof, consider the injective map $B \to A$. We can localize these at the prime ideal p' (localizing A at p' as a B-module) giving the injective map $B_{p'} \to A \otimes_B B_{p'}$, and $B_{p'}$ is a field because p' was minimal. So, if q'_0 is any prime ideal in $A \otimes B_{p'}$, then $q'_0 \cap B_{p'} = (0)$. Let q' be the inverse image of q'_0 in A (under the localization map). Then, $q' \cap B = p'$, so the image of the point $x' \in X_i$ corresponding to q' is y', i.e. y' = f(x') so $y' \in f(X_i)$.

Step 3.

To prove the theorem, we will use the previous two lemmas.

Proof. First suppose that $f: X \to Y$ is separated and we have two morphisms $h, h': T \to X$ making the diagram commute. This gives a morphism $h'' = (h, h'): T \to X \times_Y X$, and the restrictions of h and h' to U are the same, so the generic point $t_1 \in T$ has $h''(t_1) \in \Delta(X)$. Because $\Delta(X)$ is closed, this implies $h''(t_0) \in \Delta(X)$, so h and h' send the points t_0, t_1 to the same points $x_0, x_1 \in X$. Because the inclusions $k(x_1) \subset K$ coming from h, h' are the same, by Step 1, the maps h and h' are equal.

Now, suppose there is at most one map completing the diagram. To show f is separated, we must show that $\Delta(X)$ is closed. By assumption, X is noetherian, so Δ is quasi-compact (exercise!) so it suffices to show, by Step 2, that $\Delta(X)$ is stable under specialization. So, assume $z_1 \in \Delta(X)$ is a point and z_0 is a specialization. Let $K = k(z_1)$ and \mathcal{O} be the local ring of z_0 on the closure of z_1 with its reduced induced structure.

Key algebra fact (which we won't prove): because \mathcal{O} is a local ring contained in K, there is a valuation ring R dominating \mathcal{O} . Then, by Step 1, we have a morphism $T = \operatorname{Spec} R \to X \times_Y X$, and composing with the projections to X, we get two morphisms $T \to X$ that agree over Y and

agree when restricted to U. By assumption, these must be the same, which implies $T \to X \times_Y X$ factors through $\Delta(X)$ and $z_0 \in \Delta(X)$. Therefore, X is separated.

The point of the valuative criterion is that it is much easier to check separatedness of morphisms using this! We can prove statements like:

Corollary 1.7. Assume all schemes are noetherian in the following statements.

- (1) Open and closed immersions are separated.
- (2) A composition of separated morphisms is separated.
- (3) Separated morphisms are stable under base extension (i.e. if $f : X \to Y$ is separated and $Z \to Y$ is another map, then the induced map $X \times_Y Z \to Z$ is separated).
- (4) If $f: X \to Y$ and $f': X' \to Y'$ are separated morphisms of schemes over a base S, then the product $f \times f': X \times_S X' \to Y \times_S Y'$ is separated.
- (5) If $f: X \to Y$ and $g: Y \to Z$ are morphisms such that $g \circ f$ is separated, then f is separated.
- (6) A morphism $f: X \to Y$ is separated if and only if Y can be covered by open subsets V_i such that $f^{-1}(V_i) \to V_i$ is separated for all *i*.

Proof. We will prove (1) and (3) as examples of why this 'immediately' follows from the valuative criterion. For (1), let $X \to Y$ be an open immersion (the image of X is an open subscheme of Y). Consider any diagram as in the valuative criterion:

Let $g: T \to Y$ be the given map. Then, if $g(T) \subset f(X)$, there exists a unique map $T \to X$ making the diagram commute. Otherwise, there does not exist such a map. Therefore, by the valuative criterion, open immersions are separated.

Let's also prove (3). Suppose f is separated and $Z \to Y$ is any other morphism, and consider the diagram:

$$\begin{array}{cccc} U & \longrightarrow X \times_Y Z & \longrightarrow X \\ \downarrow & & \downarrow & & \downarrow \\ T & \longrightarrow Z & \longrightarrow Y \end{array}$$

If there exist two morphisms $T \to X \times_Y Z$ making the diagram commute, composing with the map $X \times_Y Z \to X$ along the top of the diagram, we have two morphisms $T \to X$, which must be equal because f is separated. So, separated morphisms are stable under base change. \Box