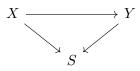
ALGEBRAIC GEOMETRY: FRIDAY, MARCH 31

1. INTRODUCTION TO SCHEMES, CONCLUSION

Another categorical correspondence we have mentioned (but not yet proven) is the following (which will make use of the following definition):

Definition 1.1. Let S be a scheme. The category of schemes over S is the category whose objects are schemes X with a morphism $X \to S$ and morphisms $X \to Y$ are morphisms compatible with the given maps to S, i.e. a morphism $X \to Y$ is a map making the following diagram commute:



If S = Spec A, we say that a scheme over S is an A-scheme or scheme over A.

Theorem 1.2. Suppose k is an algebraically closed field. Let Var_k be the category of varieties over k and Sch_k be the category of schemes over k. There is a fully faithful functor $t: Var_k \to Sch_k$. Furthermore, if $V \mapsto t(V)$, then V is homeomorphic to the closed points of the topological space of the scheme t(V), and the sheaf of regular functions on V is the restriction of the structure sheaf of t(V) under this homeomorphism.

In other words, this theorem says we can think of varieties as a subcategory of the category of schemes via the functor t.

Proof. Define the functor t as follows: on objects, if X is a topological space, then t(X) is the set of non-empty irreducible closed subsets of X. Observations: if $Y \subset X$, then $t(Y) \subset t(X)$; $t(Y_1 \cup Y_2) = t(Y_1) \cup t(Y_2)$; $t(\cap Y_i) = \cap t(Y_i)$; which together imply that there is a topology on t(X) by letting the closed sets be t(Y), where Y is a closed subset of X.

For morphisms, if $f : X_1 \to X_2$ is continuous, let $t(f) : t(X_1) \to t(X_2)$ send an irreducible closed subset to the closure of its image in X_2 . This shows that t is a functor on topological spaces.

Also, note that there is a continuous map $i: X \to t(X)$ given by $p \mapsto \overline{\{p\}}$. To define the structure sheaf, we let $\mathcal{O}_{t(X)} = i_* \mathcal{O}_X$.

Now, to prove the equivalence, let k be an algebraically closed field and V a variety over k with sheaf of regular functions \mathcal{O}_V . We will show that $(t(V), i_*\mathcal{O}_V)$ is a scheme. Since every variety is covered by affine varieties, it is sufficient to prove this for V an affine variety with affine coordinate ring A. In this case, we will show that $(t(V), i_*\mathcal{O}_V)$ is just (Spec A, $\mathcal{O}_{\text{Spec }A}$).

Note that (V, \mathcal{O}_V) is a locally ringed space, and we can define a morphism of locally ringed spaces $(f, f^{\#}) : (V, \mathcal{O}_V) \to (\text{Spec } A, \mathcal{O}_{\text{Spec } A})$ as follows: if $v \in V$, let $f(v) = m_v = \{a \in A \mid a(v) = 0\}$. Because the points of V are in one-to-one correspondence with the maximal ideals of A (= closed points of Spec A), this is a bijection from V to the closed points of Spec A, and it is a homeomorphism onto its image. To define $f^{\#}$, given any $s \in \mathcal{O}_{\text{Spec } A}(U)$, this gives a regular function $s_V : f^{-1}(U) \to k$ by, for any $v \in f^{-1}(U), s_V(v) = \overline{s(f(v))}$, where $f(v) = m_v$, $s(m_v) \in \mathcal{O}_{\text{Spec } A, m_v} \cong A_{m_v}$, and $\overline{s(f(v))}$ is the image in the residue field $A_{m_v}/m_v \cong k$. In fact, this gives an isomorphism $\mathcal{O}_{\text{Spec }A}(U) \cong \mathcal{O}_V(f^{-1}(U))$, as any regular function $s_V \in \mathcal{O}_V(f^{-1}(U))$ is $s: f^{-1}(U) \to k$ such that, at any point v, this is locally a quotient a/b of elements in A with nonzero denominator at v, meaning (near v) we can interpret s = a/b as a map to $\bigcup_{p \in U} A_p$, which is a regular function on $\mathcal{O}_{\text{Spec }A}(U)$.

Lastly, recall that the irreducible closed subsets of V are exactly the prime ideals of A, which are the points of t(V) and Spec A, so (using the definition of the topology on Spec A and t(V)), (Spec $A, \mathcal{O}_{\text{Spec }A} \cong (t(V), i_*\mathcal{O}_V)$). Furthermore, this is a scheme over k because there is a ring homomorphism $k \to i_*\mathcal{O}_V(t(V)) = \mathcal{O}_V(V)$ given by $\lambda \in k$ goes to the constant function, which gives a map $t(V) \to \text{Spec } k$.

Now, to conclude the proof, we leave it as an exercise to verify that, if V and W are varieties over k, $\operatorname{Hom}_{\mathcal{V}ar_k}(V, W) \to \operatorname{Hom}_{\mathcal{S}ch_k}(t(V), t(W))$ is bijective, which is what is meant by 't is fully faithful.' (Possible idea: reduce to the affine case, and show both of these are in bijection with Hom between two rings?)

Definition 1.3. With the previous theorem, we define \mathbb{A}_k^n as a scheme to be $\mathbb{A}_k^n = \text{Spec } k[x_1, \ldots, x_n]$.

2. Projective Schemes

Analogous to our definition of projective variety, we can define a projective scheme. Let $S = \bigoplus_{d>0} S_d$ be a graded ring. Let $S_+ = \bigoplus_{d>0} S_d$. This is often called the *irrelevant ideal*.

Definition 2.1. Proj S is the set of all homogeneous prime ideals in S that do not contain S_+ . The topology on Proj S is obtained by taking the closed subsets to be $V(I) = \{p \in \text{Proj } S \mid I \subset p\}$ where I is a homogeneous ideal of S.

Exercise 2.2. Check that this is a topology on $\operatorname{Proj} S$.

Definition 2.3. For $p \in \operatorname{Proj} S$, let $S_{(p)}$ denote the elements of degree 0 in the localization $T^{-1}S$, where T is the multiplicatively closed subset of homogeneous elements in S not in p. The structure sheaf of $\operatorname{Proj} S$ is defined as, for any $U \subset \operatorname{Proj} S$, $\mathcal{O}_{\operatorname{Proj} S}(U)$ is the set of functions $s : U \to \bigcup S_{(p)}$ such that, for each $p \in U$, there is a neighborhood V of p and $s|_V = a/b$ for homogeneous $a, b \in S$, deg $a = \deg b$, and $b \notin q$ for all $q \in V$.

The objects and their structure sheaf behave analogously to what we saw for projective varieties. We have the following proposition whose proof is similar to that of varieties.

Proposition 2.4. Let S be a graded ring.

- (1) For any $p \in \operatorname{Proj} S$, $\mathcal{O}_p \cong S_{(p)}$.
- (2) For any homogeneous $f \in S_+$, let $D_+(f) = \{p \in \operatorname{Proj} S \mid f \notin p\}$. This is open in $\operatorname{Proj} S$ and $\operatorname{Proj} S$ has an open cover by sets of this form. Furthermore, $D_+(f) \cong \operatorname{Spec} S_{(f)}$ (as schemes).

Corollary 2.5. Proj S is a scheme.

Proof. Part (1) of the proposition tells us Proj S is a locally ringed space, and part (2) tells us it is locally isomorphic to an affine scheme. \Box

Definition 2.6. We define $\mathbb{P}_k^n = \operatorname{Proj} k[x_0, \ldots, x_n]$ to be projective *n*-space over *k*. (Note: we could generalize-we say projective *n*-space over any ring *A* is $\operatorname{Proj} A[x_0, \ldots, x_n]$.)

Note: the previous proposition recovers what we already saw for affine varieties. In particular: Because $\mathbb{P}^n = \operatorname{Proj} S$ where $S = k[x_0, \ldots, x_n]$, and if $f = x_0$, then this says $D_+(x_0) \subset \mathbb{P}^n$ is isomorphic to the affine scheme Spec $S_{(x_0)}$, but $S_{(x_0)} = k[x_1/x_0, \ldots, x_n/x_0]$, so this is just \mathbb{A}^n (in exactly the same way as $D(x_0)$ was \mathbb{A}^n for varieties).