ALGEBRAIC GEOMETRY: FRIDAY, MARCH 24

1. Introduction to Schemes, Part II

Definition 1.1. Suppose $X=\operatorname{Spec} A$. The structure sheaf of X is the sheaf \mathcal{O}_{X} defined as follows. For $p \in \operatorname{Spec} A$, let A_{p} be the localization of A at the prime p. For any open set U, let $\mathcal{O}_{X}(U)$ be the set of functions $s: U \rightarrow \cup_{p \in U} A_{p}$ such that in a neighborhood V of each $p \in U$, $\left.s\right|_{V}=\frac{f}{g}$, where $f, g \in A, g \notin q$ for any $q \in V$.

In other words, we are saying that the 'regular functions' on Spec A are locally quotients f / g of elements of A, and 'the denominator being nonzero' at a point $p \in \operatorname{Spec} A$ means that $g \notin p$ so that $f / g \in A_{p}$.

Now, some properties of \mathcal{O}_{X}. Notation: if $f \in A$, let $D(f)$ be the complement of $V((f))$. By definition:

$$
V((f))=\{p \in \operatorname{Spec} A \mid f \in p\}
$$

and

$$
D(f)=\{p \in \operatorname{Spec} A \mid f \notin p\}
$$

Last time we proved:
Lemma 1.2. The open sets $D(f)$ form a base for the topology on $\operatorname{Spec} A$.
What does \mathcal{O}_{X} actually look like? The following proposition will tell us.
Proposition 1.3. Let $X=\operatorname{Spec} A$ and \mathcal{O}_{X} be the structure sheaf.
(1) For any point $p \in \operatorname{Spec} A(=$ prime ideal of $A)$, the stalk of \mathcal{O}_{X} at p is $\mathcal{O}_{p} \cong A_{p}$.
(2) If $U=D(f), f \in A$, is an open set in the base for the topology, then $\mathcal{O}_{X}(U) \cong A_{f}$. In particular, $X=D(1)$, so $\mathcal{O}_{X}(X) \cong A$.

Proof. Some reminders before we begin the proof: if S is a multiplicatively closed subset of A, then

$$
S^{-1} A=\left\{\left.\frac{a}{s} \right\rvert\, a \in A, s \in S\right\} / \sim
$$

where two elements are equivalent if:

$$
a / s \sim b / t \Longleftrightarrow \text { there exists } r \in S \text { such that } r(a t-b s)=0
$$

If p is a prime ideal in A, let $S_{p}=\{a \in A \mid a \notin p\}$ and define $A_{p}:=S_{p}^{-1} A$ (we invert the elements of A outside of p). If f is an element of A, then let $S_{f}=\left\{1, f, f^{2}, \ldots\right\}$ and define $A_{f}:=S_{f}^{-1} A$.
First we prove (1).
Define a map $\phi: \mathcal{O}_{p} \rightarrow A_{p}$ by sending any section s to its value $s_{p} \in A_{p}$.
Explicitly: we are saying take a section $s \in \mathcal{O}_{p}$, which we know is an element of $\mathcal{O}_{X} U$ for some open set U containing p, and on that open set has the expression $s=f / g$ for $f, g \in A$, where $g \notin p$. The element f / g then is an element of A_{p}. So, this map is taking s to the (equivalence class of the) representative $f / g \in A_{p}$.

Almost by definition, this is surjective: given any $f / g \in A_{p}$, on the open set $U=D(g)$, this is a section of $\mathcal{O}_{X}(U)$, and the definition of the map says f / g has image f / g. It is also injective: suppose $s, t \in \mathcal{O}_{p}$ are two elements with the same value at p. Then, by choosing a sufficiently small neighborhood U of p, we can assume $s=f / g$ and $t=h / j$ for elements $f, g, h, j \in A$ with
$g, j \notin p$. Now, we want to prove that s and t are equal in the stalk \mathcal{O}_{p}, which means that there is some open set V containing p where $\left.s\right|_{V}=\left.t\right|_{V}$. On U, since $s=f / g$ and $t=h / j$ these have the same image in A_{p}, that means $f / g=h / j$ in A_{p}, so there exists some $a \in A, a \notin p$, with $f / g=a h / a j$, or $a(f j-g h)=0 \in A$. This implies, for any q such that $a, g, j \notin q$, it is also true that $f / g=h / j \in A_{q}$. In other words, on the open set $V=D(a) \cap D(g) \cap D(j)$ (which is the collection of all q with $a, g, j \notin q)$, we have $\left.s\right|_{V}=f / g=h / j=\left.t\right|_{V} \in \mathcal{O}_{X}(V)$. Therefore, $s=t \in \mathcal{O}_{p}$, so this map is injective.
Now, we prove (2).
We will define a map $\psi: A_{f} \rightarrow \mathcal{O}_{X}(U)$ by sending an element a / f^{n} to the section $s=a / f^{n}$ (this is an element of $\mathcal{O}_{X}(U)$ by definition; for any $p \in U, f \notin p$). To show this is injective, we must prove that if two elements a / f^{n} and b / f^{m} have the same value in $\mathcal{O}_{X}(U)$, which by definition means they have the same value in each A_{p} for $p \in D(f)$, then they are actually equal in A_{f}, meaning there is some f^{l} such that $f^{l}\left(a f^{m}-b f^{n}\right)=0$.

So, assume they have the same image, i.e. for every $p \in D(f), a / f^{n}=b / f^{m} \in A_{p}$, so there is some $h \notin p$ with $h\left(a f^{m}-b f^{n}\right)=0$. For notational simplicity, let $g=a f^{m}-b f^{n}$. Then, $h \in \operatorname{Ann}(g)$ but $h \notin p$, so $A n n(g) \not \subset p$, and this holds for any $p \in D(f)$, so $V(A n n(g))$ does not contain any prime p in $D(f)$, i.e. $V(\operatorname{Ann}(g) \cap D(f)=\emptyset$, which implies $V(\operatorname{Ann}(g)) \subset V((f))$. This means $f \in \sqrt{\operatorname{Ann(g)}}$, so $f^{l} \in A n n(g)$ for some $l>0$, so $f^{l}\left(a f^{m}-b f^{n}\right)=0$, which implies that $a / f^{n}=b / f^{m}$ in A_{f}. Therefore, the map is injective.

Now, we must show that ψ is surjective. We will make several simplifying changes through the course of the proof, which I will label clearly.

Suppose $s \in \mathcal{O}_{X}(U)$. We want to show that s comes from some element in A_{f}, i.e. $s=a / f^{n}$ for some $a \in A$. By definition of \mathcal{O}, we can over U by open sets $U=\cup V_{i}$ where on each i, $s_{i}:=\left.s\right|_{V_{i}}=a_{i} / g_{i}$ where $a_{i}, g_{i} \in A$ and $g_{i} \notin p$ for all $p \in V_{i}$ (i.e. $\left.V_{i} \subset D\left(g_{i}\right)\right)$.

Simplification 1: Because the open sets of the form $D(h)$ form a base for the topology, by (possibly passing to an open cover of V_{i}) we may assume $V_{i}=D\left(h_{i}\right)$ for some $h_{i} \in A$.

Also, $V_{i}=D\left(h_{i}\right) \subset D\left(g_{i}\right)$, so $V\left(\left(g_{i}\right)\right) \subset V\left(\left(h_{i}\right)\right)$, so $\sqrt{\left(h_{i}\right)} \subset \sqrt{\left(g_{i}\right)}$, so $h_{i}^{n} \in\left(g_{i}\right)$ for some $n>0$. Therefore, for some $c \in A, h_{i}^{n}=c g_{i}$ so $a_{i} / g_{i}=c a_{i} / c g_{i}=c a_{i} / h_{i}^{n}$.

Simplification 2: Because $D\left(h_{i}\right)=D\left(h_{i}^{n}\right)$, we can replace h_{i}^{n} with h_{i}^{\prime} and cai with a_{i}^{\prime} to assume the following: U is covered by open sets $D\left(h_{i}^{\prime}\right)$, and $s_{i}:=\left.s\right|_{D\left(h_{i}^{\prime}\right)}=a_{i}^{\prime} / h_{i}^{\prime}$. Because we will simplify again, we will drop the primes from the notation, so we have: U is covered by open sets $D\left(h_{i}\right)$, and $s_{i}:=\left.s\right|_{D\left(h_{i}\right)}=a_{i} / h_{i}$

Simplification 3: We can assume the covering $D\left(h_{i}\right)$ is finite. Why? If $D(f) \subset \cup D\left(h_{i}\right)$, this means $V\left(\sum\left(h_{i}\right)\right)=\cap V\left(\left(h_{i}\right)\right) \subset V((f))$, which means $f \in \sqrt{\sum\left(h_{i}\right)}$. In other words, $f^{n} \in \sum\left(h_{i}\right)$, but by definition of the sum of ideals, any element in $\sum\left(h_{i}\right)$ is a finite sum of elements, so $f^{n}=\sum_{i=1}^{r} b_{i} h_{i}$ for some $b_{i} \in A, r>0$. Therefore, $D(f) \subset D\left(h_{1}\right) \cup \cdots \cup D\left(h_{r}\right)$.

Now, we wish to say that our element s is equal to a / f^{n}. Roughly, we will patch together the s_{i} 's over common denominators to do this. Because s was a sheaf, the s_{i} 's (restrictions of s) must agree on the overlap of the sets $D\left(h_{i}\right)$, so on $D\left(h_{i}\right) \cap D\left(h_{j}\right)=D\left(h_{i} h_{j}\right), s_{i}=a_{i} / h_{i}=s_{j}=a_{j} / h_{j}$. By the injectivity that we have already proven, this means the elements have the same image in $\mathcal{O}\left(D\left(h_{i} h_{j}\right)\right)$, so they are actually equal in $A_{h_{i} h_{j}}$. Therefore, for some $n,\left(h_{i} h_{j}\right)^{n}\left(a_{i} h_{j}-a_{j} h_{i}\right)=0$. Because there are only finitely many intersections, we may choose $n \gg 0$ so it works for all i, j. In other words, we are assuming for any $i, j, h_{j}^{n+1} h_{i}^{n} a_{i}-h_{i}^{n+1} h_{j}^{n} a_{j}$.

Simplification 4: Because $D\left(h_{i}\right)=D\left(h_{i}^{n+1}\right)$, we can replace our open cover by $D\left(h_{i}^{n+1}\right)$ (and rename h_{i}^{n+1} as h_{i}^{\prime}, and $h_{i}^{n} a_{i}$ by a_{i}^{\prime}) to assume we have an open cover $D(f) \subset D\left(h_{1}^{\prime}\right) \cup \cdots \cup D\left(h_{r}^{\prime}\right)$ where $s_{i}=a_{i}^{\prime} / h_{i}^{\prime}$, and for all $i, j, a_{i}^{\prime} h_{j}^{\prime}=a_{j}^{\prime} h_{i}^{\prime}$. Again, we will drop all of the primes.

So, we have an open cover $D(f) \subset D\left(h_{1}\right) \cup \cdots \cup D\left(h_{r}\right)$ where $s_{i}=a_{i} / h_{i}$, and for all i, j, $a_{i} h_{j}=a_{j} h_{i}$.

Now, because $D(f) \subset D\left(h_{1}\right) \cup \cdots \cup D\left(h_{r}\right)$, there is some n such that $f^{n}=\sum_{i=1}^{r} b_{i} h_{i}$. Let $a=\sum b_{i} a_{i}$. Then, $h_{j} a=\sum_{i=1}^{r} b_{i} h_{j} a_{i}$, and we can use the relationship $a_{i} h_{j}=a_{j} g_{i}$ to write $h_{j} a=\sum_{i=1}^{n} b_{i} a_{j} h_{i}=a_{j} f^{n}$. This means $h_{j} a-a_{j} f^{n}=0$, or $a / f^{n}=a_{j} / h_{j}$ on $D\left(h_{j}\right)$. In other words, the image of the element a / f^{n} in $\mathcal{O}_{X}(U)$ agrees with $s_{i}=\left.s\right|_{\left.D\left(h_{i}\right)\right)}$ on the open cover. So, by the sheaf condition, the image of the element $a / f^{n} \in \mathcal{O}_{X}(U)$ is s. Because $a / f^{n} \in A_{f}$, this shows that ψ is surjective.

