ALGEBRAIC GEOMETRY: FRIDAY, MARCH 10

1. Sheaves, continued.

A few more definitions:

Definition 1.1. A subsheaf of a sheaf \mathcal{F} is a sheaf \mathcal{F}' such that, for every $U \subset X$, $\mathcal{F}'(U)$ is a subgroup of $\mathcal{F}(U)$, and the restriction maps on \mathcal{F}' are induced by those of \mathcal{F} . It follows that \mathcal{F}'_p is a subgroup of \mathcal{F}_p .

Definition 1.2. If $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, then the **kernel** of ϕ , ker ϕ , is the presheaf kernel of ϕ (which is a sheaf). This is a subsheaf of \mathcal{F} .

A morphism of sheaves $\phi : \mathcal{F} \to \mathcal{G}$ is **injective** if ker $\phi = 0$.

Definition 1.3. If $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, the **image** of ϕ , im ϕ , is the sheafification of the presheaf image of ϕ . By the universal property of sheafification, this can be identified as a subgroup of \mathcal{G} .

A morphism of sheaves $\phi : \mathcal{F} \to \mathcal{G}$ is **surjective** if $\operatorname{im} \phi = \mathcal{G}$.

Definition 1.4. An exact sequence of sheaves is a sequence of sheaves

$$ightarrow \mathcal{F}^{i-1}
ightarrow \mathcal{F}^i
ightarrow \mathcal{F}^{i+1}
ightarrow$$

such that, at each stage, ker $\phi^i = \mathrm{im}\phi^{i-1}$.

Definition 1.5. If $\mathcal{F}' \subset \mathcal{F}$, the **quotient sheaf** \mathcal{F}/\mathcal{F}' is the sheafification of the presheaf whose values on each open set are $\mathcal{F}(U)/\mathcal{F}'(U)$.

Definition 1.6. The **cokernel** of a map of sheaves $\mathcal{F} \to \mathcal{G}$ is the sheafification of the presheaf cokernel.

Now, suppose $f: X \to Y$ is a continuous map of topological spaces.

Definition 1.7. If \mathcal{F} is a sheaf on X, the **direct image** or **pushforward** of \mathcal{F} is the sheaf $f_*\mathcal{F}$ such that $f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))$.

If \mathcal{G} is a sheaf on Y, the **inverse image** of \mathcal{G} is the sheaf $f^{-1}\mathcal{G}$ that is the sheafification of the presheaf whose values on any open set U are $f^{-1}\mathcal{G}(V) = \lim \mathcal{G}(V)$, where the limit is taken over all open sets V containing f(U).

If $Z \subset X$, let $i : Z \to X$ denote the inclusion. If \mathcal{F} is a sheaf on X, we denote $i^{-1}\mathcal{F}$ by $\mathcal{F}|_Z$ and call it the **restriction** of \mathcal{F} . You can verify that, for $p \in Z$, $(\mathcal{F}|_Z)_p = \mathcal{F}_p$.

Exercise 1.8. Let $f \in A$ be an irreducible polynomial and let $X = Z(f) \subset \mathbb{A}^n$. Let $\mathcal{I}_X(U) = \{f \in \mathcal{O}_{\mathbb{A}^n}(U) \mid f(p) = 0 \quad \forall p \in X \cap U\}$. Show that \mathcal{I}_X is a sheaf, a subsheaf of $\mathcal{O}_{\mathbb{A}^n}$, and that the following sequence

$$0 \to \mathcal{I}_X \to \mathcal{O}_{\mathbb{A}^n} \to i_*\mathcal{O}_X \to 0$$

is exact, where $i: X \to \mathbb{A}^n$ is the inclusion.

2. Spec

As a first step to defining schemes, we start with the spectrum of a ring.

Definition 2.1. Let A be a ring. Define Spec A to be the set of prime ideals in A.

We will regard Spec A as a topological space. For any ideal $I \subset A$, let

$$V(I) = \{ P \in \text{Spec } A \mid I \subset P \}$$

This will give the topology after the following lemma.

Lemma 2.2. (1) If I_1, I_2 are ideals of A, then $V(I_1I_2) = V(I_1) \cup V(I_2)$.

(2) If $\{I_i\}$ is a set of ideals in A, then $V(\sum I_i) = \cap V(I_i)$.

(3) If I_1 and I_2 are two ideals of A, then $V(I_1) \subset V(I_2)$ if and only if $\sqrt{I_2} \subset \sqrt{I_1}$.

Proof. For (1), suppose P contains I_1 or P contains I_2 . Then, $I_1I_2 \subset P$. Now suppose $I_1I_2 \subset P$. If $I_2 \not\subset P$, then there exists $r \in I_2$ such that $r \notin P$, so $I_1r \subset P$ implies that $I_1 \in P$.

For (2), recall that $\sum I_i$ is the smallest ideal containing all of the ideals I_i . So, I_i is contained in P for each i if and only if $\sum I_i$ is contained in P.

(3) follows because the radical of an ideal I is the intersection of all prime ideals containing I.

We define the Zariski topology on Spec A to be the topology where the closed sets are V(I) for any ideal $I \subset A$.

Let's do some examples!

Example 2.3. What is Spec k, where k is a field? The only ideals are (0) and (1), so the closed sets are the whole space and the empty set. This is just one point.

Example 2.4. What is Spec k[x]? Certainly there is (0), but this is contained in every prime ideal, so this is a point whose closure is the whole space. This is called the generic point.

The other points are the other prime ideals. If k is algebraically closed, all of the other prime ideals are maximal, of the form (x - a) for $a \in k$. These are closed points (because they are maximal ideals), and are in bijection with k. So, in a sense we will get to, this is \mathbb{A}_{k}^{1} .

What if k is not algebraically closed? Suppose $k = \mathbb{R}$. Then, any irreducible polynomial f(x) defines a prime ideal (and in fact maximal ideal). Irreducible polynomials are either linear, x - a, which correspond to the values in \mathbb{R} , or irreducible quadratics. For example $x^2 + 1$. These are also closed points!

Exercise 2.5. What is Spec \mathbb{Z} ?

Exercise 2.6. What is Spec $k[x]/(x^2)$?

Exercise 2.7. What is Spec k[x, y]?