ALGEBRAIC GEOMETRY: WEDNESDAY, MARCH 8

1. Sheaves, continued.

Reminders from last time:

Definition 1.1. Let X be a topological space. A **presheaf** \mathcal{F} of abelian groups on X is the data of:

- (1) For every open set $U \subset X$, an abelian group $\mathcal{F}(U)$, such that $\mathcal{F}(\emptyset) = 0$
- (2) For every $V \subset U$, there is a $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ such that $\rho_{UU} = id$ and if $W \subset V \subset U$, $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$

A sheaf is presheaf that is defined by 'local data':

Definition 1.2. Let X be a topological space. A sheaf \mathcal{F} on X is a presheaf \mathcal{F} satisfying the following additional conditions:

- (1) For any open set $U \subset X$ and open cover $U = \bigcup V_{\alpha}$, if $s \in \mathcal{F}(U)$ such that $\rho_{UV_{\alpha}}(s) = 0$ for each α , then s = 0. (If s 'restricts' to 0 on each open set, then is 0.)
- (2) For any open U and open cover $U = \bigcup V_{\alpha}$, if for each α there exists $s_{\alpha} \in \mathcal{F}(V_{\alpha})$ such that $\rho_{V_{\alpha}(V_{\alpha}\cap V_{\beta})}s_{\alpha} = \rho_{V_{\beta}(V_{\alpha}\cap V_{\beta})}s_{\beta}$, then there exists $s \in \mathcal{F}(U)$ such that $\rho_{UV_{\alpha}}(s) = s_{\alpha}$. (If there exists a collection of s's on the open cover that agree on the overlaps, they can be 'glued' together to an s on the whole set.)

Definition 1.3. If \mathcal{F} is a presheaf on X and $p \in X$, then the **stalk** of \mathcal{F} at p is the direct limit over sets containing p:

$$\mathcal{F}_p = \lim_{p \in U} \mathcal{F}(U)$$

where the limit is taken over the restriction maps $\mathcal{F}(U) \to \mathcal{F}(V)$.

Definition 1.4. If \mathcal{F} and \mathcal{G} are presheaves (or sheaves) on a topological space X, a morphism $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism $\phi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ for each open set $U \subset X$ such that, if $V \subset U$, the diagram

$$\begin{array}{ccc}
\mathcal{F}(U) & \xrightarrow{\phi(U)} & \mathcal{G}(U) \\
& & \downarrow^{\rho_{UV}} & \downarrow^{\rho_{UV}} \\
\mathcal{F}(V) & \xrightarrow{\phi(V)} & \mathcal{G}(V)
\end{array}$$

commutes. By abuse of notation, ρ means the restriction map for either \mathcal{F} or \mathcal{G} .

Definition 1.5. An **isomorphism** of presheaves (or sheaves) is a morphism with a two-sided inverse.

Proposition 1.6. If $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, then ϕ is an isomorphism if and only if the induced map $\phi_p : \mathcal{F}_p \to \mathcal{G}_p$ is an isomorphism for every $p \in X$.

Proof. If ϕ is an isomorphism, then by definition ϕ_p is an isomorphism. So, we assume $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism such that ϕ_p is an isomorphism for each p. We will use the local nature of sheaves

to show that $\phi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ is an isomorphism for each U (which will show that ϕ is an isomorphism).

First we show $\phi(U)$ is injective. If $s \in \mathcal{F}(U)$ such that $\phi(s) = 0$, then for each $p \in U$, $\phi_p(s) = 0$, so $s_p = 0$ (because ϕ_p was an isomorphism). By definition of stalk, there is a neighborhood V_p containing p such that $s|_{V_p} = 0$. Because these neighborhoods cover X, by the first sheaf property, s = 0.

Now, we show $\phi(U)$ is surjective. If $t \in \mathcal{G}(U)$, consider $t_p \in \mathcal{G}_p$ for any $p \in U$. Because ϕ_p is an isomorphism, there is an element $s_p \in \mathcal{F}_p$ such that $\phi_p(s_p) = t_p$. By definition of stalk, there is a neighborhood V_p of p such that s_p is defined by s(p) an element of $\mathcal{F}(V_p)$. Then, $\phi(s(p))$ agrees with $t|_{V_p}$ on some (possibly smaller) neighborhood of p. On this smaller neighborhood, we can say that $\phi(s(p)) = t|_{V_p} \in \mathcal{G}(V_p)$. Now, because U is covered by the open sets V_p , we want to patch the local functions together s(p) to a function on U. To do this, we need to show the local functions agree on the overlaps. If $p, q \in X$, then $s(p)|_{V_p \cap V_q} = s(q)|_{V_p \cap V_q}$ because $\phi(s(p)|_{V_p \cap V_q}) = t|_{V_p \cap V_q} = \phi(s(q)|_{V_p \cap V_q})$ and ϕ is injective on open sets. Therefore, they agree on the overlap so by the second sheaf property, there exist an element $s \in \mathcal{F}(U)$ such that $s|_{V_p} = s(p)$. Furthermore, because $\phi(s|_{V_p}) - t|_{V_p} = 0$ by construction, $\phi(s) - t = 0$ in a neighborhood of each point, so by the first sheaf property, $\phi(s) - t = 0$, i.e. $\phi(s) = t$. Therefore, $\phi(U)$ is surjective.

Definition 1.7. If $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism of presheaves, the

- (1) **presheaf kernel** is the presheaf whose values on each open set is ker $\phi(U)$
- (2) **presheaf cokernel** is the presheaf whose values on each open set is $\operatorname{coker}\phi(U)$
- (3) presheaf image is the presheaf whose values on each open set is $im\phi(U)$

Exercise 1.8. If $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, the presheaf kernel of ϕ is a sheaf, but the presheaf cokernel and presheaf image need not be sheaves.

Example 1.9. To see a concrete example, let $X = \mathbb{C} - 0$ and let $\mathcal{F} = \mathcal{G}$ be the sheaf of continuous functions on X. Consider the map $\phi : \mathcal{F} \to \mathcal{G}$ given by $\phi(f) = e^f$.

The image of this map is not a sheaf. For example, the function z (the identity) has a logarithm locally at every point, i.e. there is an open cover $X = \bigcup U_i$ such that $z = \log f_i$, so $z = \phi(f_i)$ on U_i , but there is no continuous logarithm on all of X, so these functions do not come from an element of the image of ϕ . Therefore, it fails the second property of being a sheaf.

Definition 1.10. Given a presheaf, we can define the **sheafification** of \mathcal{F} to the unique sheaf \mathcal{F}^{sh} with morphism $\theta : \mathcal{F} \to \mathcal{F}^{sh}$ such that, for any morphism $\phi : \mathcal{F} \to \mathcal{G}$ to a sheaf \mathcal{G} , the morphism ϕ factors through θ .

We verify that \mathcal{F}^{sh} exists. (The uniqueness of \mathcal{F}^{sh} follows from the universal property.) To construct \mathcal{F}^{sh} , we define it on open sets. Essentially, we will just declare that all compatible germs of functions form a section:

$$\mathcal{F}^{sh}(U) = \{ (f_p) \in \bigcup_{p \in U} \mathcal{F}_p \mid \text{ for all } p \in U, \text{ there exists } V \subset U \text{ containing } p \text{ and} \\ s \in \mathcal{F}(V) \text{ such that, for all } q \in V, s_q = f_q \}$$

Exercise 1.11. Verify that \mathcal{F}^{sh} is actually a sheaf and that it has the universal property as above. Show that $\mathcal{F}_p = \mathcal{F}_p^{sh}$, and if \mathcal{F} was already a sheaf, then $\mathcal{F} = \mathcal{F}^{sh}$.

Definition 1.12. If $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, then the **kernel** of ϕ , ker ϕ , is the presheaf kernel of ϕ (which is a sheaf).

A morphism of sheaves $\phi : \mathcal{F} \to \mathcal{G}$ is **injective** if ker $\phi = 0$ (equivalently, $\phi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ is injective for every U).

3

Definition 1.13. If $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, the **image** of ϕ , $\operatorname{im}\phi$, is the sheafification of the presheaf image of ϕ .

A morphism of sheaves $\phi : \mathcal{F} \to \mathcal{G}$ is **surjective** if $\operatorname{im} \phi = \mathcal{G}$.

Caution: unlike the injective case, a surjective morphism of sheaves need not induce a surjection of sections $\phi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$. (This is true only on the level of stalks!)

Example 1.14. Consider the previous example of the function e^f . The sheafification of the image must include the function z (the identity) but this is not in the image of $\mathcal{F}(X)$. Therefore, it is not surjective on global sections.

Definition 1.15. The **cokernel** of a map of sheaves $\mathcal{F} \to \mathcal{G}$ is the sheafification of the presheaf cokernel.