# ALGEBRAIC GEOMETRY: FRIDAY, FEBRUARY 24 

## 1. Rational Maps and Blow-ups, Continued

Reminders from last time:
Definition 1.1. Let $X$ and $Y$ be varieties. A rational map $\phi: X \rightarrow Y$ is an equivalence class of pairs $\left(U, \phi_{U}\right)$, where $U \subset X$ is an open set and $\phi_{U}: U \rightarrow Y$ is a morphism. Two pairs $\left(U, \phi_{U}\right)$ and $\left(V, \phi_{V}\right)$ are equivalent if $\phi_{U}=\phi_{V}$ on $U \cap V$.
Definition 1.2. A rational map $\phi: X \rightarrow Y$ is dominant if the image of $U$ is dense in $Y$.
Definition 1.3. Two varieties $X$ and $Y$ are said to be birational if there is a rational map $\phi: X \rightarrow Y$ which admits an inverse $\psi: Y \rightarrow X$.

Example 1.4. Let $p=(0, \ldots, 0) \subset \mathbb{A}^{n}$. The blow-up of the point $p \in \mathbb{A}^{n}$ is the quasi-projective variety $Y \subset \mathbb{A}_{x_{i}}^{n} \times \mathbb{P}_{y_{i}}^{n-1}$ defined by the equations

$$
\left\{x_{i} y_{j}-x_{j} y_{i}=0 \mid i, j=1, \ldots, n\right\}
$$

Let $p r_{1}: \mathbb{A}^{n} \times \mathbb{P}^{n-1} \rightarrow \mathbb{A}^{n}$ be the projection onto the first factor, and let $\phi=\left.p r_{1}\right|_{Y}: Y \rightarrow \mathbb{A}^{n}$. This is a birational map! Indeed, consider the set $U=\mathbb{A}^{n}-p$. We claim that $Y \cap \phi^{-1}(U) \cong U$. Suppose $q=\left(a_{1}, \ldots, a_{n}\right) \neq 0$. Then, at least one $a_{i} \neq 0$, so $\phi^{-1}(q)$ is one point: we must have $y_{j}=\left(a_{j} / a_{i}\right) y_{i}$ (and we can scale $y_{i}$ by any constant, so suppose $y_{i}=a_{i}$ ), which says $\phi^{-1}(q)=q \times\left[a_{1}: \cdots: a_{n}\right]$. This says the morphism $\psi: U \rightarrow Y \cap \phi^{-1}(U)$ given by $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}, \ldots, a_{n}\right) \times\left[a_{1}: \cdots: a_{n}\right]$ is the inverse of $\phi$, so $\phi$ is birational.

What does this morphism do over $p$ ? The points of $\phi^{-1}(p)$ exactly correspond to lines through $p \in \mathbb{A}^{n}$ : if $L$ is a line through $p$, then $L$ consists of all points $\left(x_{1}, \ldots, x_{n}\right)=\left(t a_{1}, \ldots, t a_{n}\right)$ for some point $q=\left(a_{1}, \ldots, a_{n}\right)$ and $t \in \mathbb{A}^{1}$. Then, if we consider $L-p$ (by what we just showed), $\phi$ has an inverse $\psi$, and the preimage is given (parametrically) by $\left(t a_{1}, \ldots, t a_{n}\right) \times\left[t a_{1}: \cdots: t a_{n}\right]$ for $t \neq 0$. But, the second point is in projective space, so this is the same as $\left(t a_{1}, \ldots, t a_{n}\right) \times\left[a_{1}: \cdots: a_{n}\right]$. As we approach 0 , this shows that the closure of the line $\phi^{-1}(L-p)$ is the line that meets $\phi^{-1}(p)$ in just the point $\left[a_{1}: \cdots: a_{n}\right]$. This gives a one-to-one correspondence between points of the $\mathbb{P}^{n-1}$ living over $p$ and lines through $p$.

Example 1.5. If $V \subset \mathbb{A}^{n}$ is an affine variety containing $p$, then we can define the blow-up of $V$ at $p$ to be the closure of $\phi^{-1}(V-p)$ inside the blow-up of $\mathbb{A}^{n}$ at $p$.

For example, suppose $V=Z\left(y^{2}-x^{2}(x+1)\right) \subset \mathbb{A}^{2}$. This is a nodal curve, and let's blow up the node $p=(0,0) \in \mathbb{A}^{2}$. Let's call the coordinates on the $\mathbb{P}^{1} u$ and $v$, so the blow-up of $\mathbb{A}^{2}$ is given by $Z(x v-y u) \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$.

To compute the blow up of $V$, we need to determine the closure of the preimage of $V-p$. We will work affine-locally, meaning we first look on the $\mathbb{P}^{1}$-chart where $u \neq 0$. This is just $D(u) \cong \mathbb{A}^{1}$, and we will call the coordinate on $\mathbb{A}^{1} v$. On $\mathbb{A}^{2} \times D(u)$, the blow-up is given by $x v-y=0$ (we 'set $u$ equal to 1 ' in the isomorphism $D(u) \cong \mathbb{A}^{1}$ ), which says $y=x v$. Taking the equation of $V$ and substituting, we get $(x v)^{2}-x^{2}(x+1)=x^{2}\left(v^{2}-(x+1)\right)$. If $q$ is any point in $V-p$, then $x \neq 0$, so the equation of $V-p$ in the blow-up is given by $v^{2}-(x+1)=0$. The closure of this in $\mathbb{A}^{2} \times D(u)$ is just $Z\left(v^{2}-(x+1)\right.$ ), which, by definition, is the blow-up of $V$ on this chart! As an exercise, you can work out the equation on the other chart.

Observe what happens over the point $p$. This equation intersects the pre-image of $p$ (where $(x, y)=(0,0))$ is $v^{2}-(0+1)=0$, or $v^{2}=1$, so $v= \pm 1$. This says the blow-up of $V$ intersects the
preimage of $(0,0)$ in two distinct points, $[1: 1]$ and $[1:-1]$. So, what we have accomplished by blowing-up is separating the two branches of the curve $V$ at the node. This is called a 'resolution of singularities' because the blow-up of $V$ is smooth everywhere.

To make the previous example more precise (and to generalize it), we will introduce what it means for a variety to be smooth.

## 2. Nonsingularity

Definition 2.1. If $Y \subset \mathbb{A}^{n}$ is an affine variety with ideal $I(Y)=\left(f_{1}, \ldots, f_{t}\right) \subset k\left[x_{1}, \ldots, x_{n}\right]$, the $Y$ is nonsingular or smooth at a point $p \in Y$ if the rank of the Jacobian matrix (the matrix whose $i j$ th entry is $\left.\partial f_{i} / \partial x_{j}\right)$ at $p$ is $n-\operatorname{dim} Y$. It is singular at $p$ if it is not nonsingular at $p$. It is nonsingular if it is nonsingular at every point.
Example 2.2. The curve given by $y^{2}-x^{2}(x+1)=0$ in $\mathbb{A}^{2}$ is singular at $(0,0)$, and nonsingular at every other point. The Jacobian matrix is $\left[\begin{array}{cc}-3 x^{2}-2 x & 2 y\end{array}\right]$ which has rank 1 if and only if $2 y \neq 0$ and $-3 x^{2}-2 x=-x(3 x+2) \neq 0$, which occurs if and only if $(x, y) \neq(0,0),(-2 / 3,0)$, but the latter point is not on the curve, so the only singularity is $(0,0)$.

While the definition appears to depend on the embedding of $Y$ into affine space, it turns out it is intrinsic to $Y$.

Definition 2.3. If $A$ is a noetherian local ring with maximal ideal $m$ and residue field $k$, then $A$ is regular if $\operatorname{dim}_{k} m / m^{2}=\operatorname{dim} A$.
Theorem 2.4. If $Y \subset \mathbb{A}^{n}$ is an affine variety and $p \in Y$, then $Y$ is nonsingular at $p$ if and only if $\mathcal{O}_{p}$ is a regular local ring.
Proof. Let $I(Y)=\left(f_{1}, \ldots, f_{t}\right)$ and $J$ be the Jacobian matrix. Let $m$ be the maximal ideal of $\mathcal{O}_{p}$. To prove this, we will show that $\operatorname{dim} m / m^{2}+\operatorname{dim} J=n$, which says exactly that $\operatorname{dim} J=n-\operatorname{dim} m / m^{2}$.

This will prove the result: we know already that $\operatorname{dim} \mathcal{O}_{p}=\operatorname{dim} Y$, so $\mathcal{O}_{p}$ is regular if and only if $\operatorname{dim} m / m^{2}=\operatorname{dim} Y$ if and only if $\operatorname{dim} J=n-\operatorname{dim} Y$.

So, let's show $\operatorname{dim} m / m^{2}+\operatorname{dim} J=n$. Let $p=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}$ and let

$$
m_{p}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \subset A=k\left[x_{1}, \ldots, x_{n}\right]
$$

be the corresponding maximal ideal. Let

$$
\theta: A \rightarrow k^{n}
$$

be given by

$$
\theta(f)=\left(\partial f / \partial x_{1}(p), \ldots, \partial f / \partial x_{n}(p)\right)
$$

The vectors $\theta\left(x_{i}-a_{i}\right)$ form a basis for $k^{n}$ and $\theta\left(m_{p}^{2}\right)=0$, so $\theta$ gives an isomorphism

$$
\bar{\theta}: m_{p} / m_{p}^{2} \rightarrow k^{n}
$$

For simplicity, let $V=m_{p} / m_{p}^{2}$.
By construction, $\operatorname{rank} J$ is $\operatorname{dim} \theta(I(Y)) \subset k^{n}$. Let $\bar{I}$ be the image of $I(Y)$ in $V$, which is isomorphic to $\theta(I(Y))$. Note that $\bar{I}$ is just $\bar{I}=\left(I(Y)+m_{p}^{2}\right) / m_{p}^{2}$. Because $V$ is a vector space, $V=V / \bar{I} \oplus \bar{I}$, and $\operatorname{dim} V=n$, and $\operatorname{dim} \bar{I}=\operatorname{rank} J$. So, we just need to show that $\operatorname{dim} V / \bar{I}=\operatorname{dim} m / m^{2}$.

But, $\mathcal{O}_{p}$ is just $(A / I)_{m_{p}}$, and $m$ is just the maximal ideal which is the image of $m_{p}$. In other words, $m=\left(m_{p}\right) / I$, so $m^{2}=\left(m_{p}^{2}+I\right) / I$, so $m / m^{2}=\left(m_{p}\right) /\left(m_{p}^{2}+I\right)$, which is just $V / \bar{I}$, so $\operatorname{dim} V / \bar{I}=\operatorname{dim} m / m^{2}$.

We use this definition to generalize nonsingularity to all varieties. However, because the local ring $\mathcal{O}_{p}$ is something we can compute locally (i.e. on affine charts), we usually go to an affine chart and compute with the Jacobian condition there.

Definition 2.5. A variety $Y$ is nonsingular at $p \in Y$ is $\mathcal{O}_{p}$ is a regular local ring, and nonsingular if it is nonsingular at every point.

Some remarks that we won't prove:
(1) If $Y$ is a variety, then the set of singular points of $Y$ is a proper closed subset of $Y$.
(2) Over $\mathbb{C}$, Hironaka's resolution of singularities says that, for any variety $X$, there is a nonsingular variety $Y$ and a birational morphism $\phi: Y \rightarrow X$ (that is a composition of blow-ups!) such that $Y-\phi^{-1} \operatorname{Sing}(X) \cong X-\operatorname{Sing}(X)$. So, one reason we care about blow-ups is that they remove singular points of varieties!

