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1. Structure sheaves of projective varieties

Recall from last time: Y variety, p ∈ Y , U ⊂ Y open.

Definition 1.1. Let O(U) = {regular functions on U} be the structure sheaf of Y .

Definition 1.2. The local ring of p ∈ Y is

OY,p = {germs of regular functions near p}.
This is defined with an equivalence relation: elements are pairs (U, f) where U is an open set
and f is a regular function at p. If U, V are open sets containing p, (U, f) = (V, g) if f = g on
U ∩ V .

Definition 1.3. Given a variety Y , the function field of Y is

K(Y ) = {(U, f) | U ⊂ Y open , f ∈ O(U)}/ ∼
where (U, f) ∼ (V, g) if f = g on U ∩ V .

The elements of K(Y ) are rational functions on Y .

Last time we proved the following about affine varieties:

Theorem 1.4. If Y ⊂ An is an affine variety, let A(Y ) be its affine coordinate ring. Then:

(1) O(Y ) ∼= A(Y )
(2) For each p ∈ Y , define mp = {f ∈ A(Y ) | f(p) = 0}. The correspondence p 7→ mp is a

one-to-one correspondence between points of Y and maximal ideals in A(Y ).
(3) For each p ∈ Y , Op

∼= A(Y )mp and dimOp = dimY .
(4) The field K(Y ) is isomorphic to the fraction field of A(Y ) (so, K(Y ) is a finitely

generated field extension of k and trdegkK(Y ) = dimY .

Today, the analogous statement for projective varieties.
NOTATION. Unfortunately, the notation regarding graded rings in this section is not great. I’ll
spell it out here:

(1) If R is a graded ring and d a non-negative integer, then Rd is the degree d part of R.
(2) If R is a ring and f ∈ R, then Rf is the localization of R at f , i.e. we can invert f (so

we allow f, f2, f3, . . . in the denominators).
(3) If R is a graded ring and f ∈ R, then R(f) is the degree 0 part of Rf .
(4) If R is a ring and p is a prime ideal, then Rp is the localization of R at the prime ideal p,

which means everything outside of p is inverted. This is different than (2) and (3), and
can be confusing but is supposed to be clear from context! For example, the notation
R(x) could mean either the localization of R at the prime ideal (x) (where everything
outside x is inverted) or it could mean the degree 0 part of Rx (the localization where x
is inverted). If instead we write R((x)) it must mean the degree 0 part of the localization
of R(x).

Theorem 1.5. Let Y ⊂ Pn be a projective variety with homogeneous coordinate ring S(Y ).
Then:

(1) O(Y ) = k
1
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(2) Op = S(Y )(mp), where mp = {f ∈ S(Y ) | f(p) = 0} (from above: S(Y )(mp) denotes the
degree 0 elements in the localization S(Y )mp)

(3) K(Y ) ∼= S(Y )((0)) (from above: S(Y )((0)) denotes the degree 0 part of the fraction field
of S(Y ))

Proof. Let Ui = D(xi) ⊂ Pn, which is isomorphic to An. Note the isomorphism and correspond-
ing maps we defined earlier naturally gives an isomorphism of rings:

A = k[y1, . . . , yn] → S(xi) = k[x0, . . . , xn](xi)

(where S(xi) is the degree 0 part of Sxi) by

f(y1, . . . , yn) 7→ f(x0/xi, . . . , ˆxi/xi, . . . , xn/xi).

Let Yi = Y ∩Ui which is an affine variety. Then, one can check that this isomorphism of rings
sends I(Yi) to I(Y )S(xi), so we get an isomorphism A(Yi) ∼= S(Y )(xi).

Now, we can essentially work with Y as if it were an affine variety because regular functions
are defined locally. Let p ∈ Y , and choose i such that p ∈ D(xi). Then, by the theorem for
affine varieties, Op

∼= A(Yi)mp , and because xi /∈ mp, it is inverted when we localize at mp, so
the isomorphism above says Op

∼= A(Yi)mp
∼= S(Y )(mp).

Because K(Y ) is the quotient field of Op, K(Y ) ∼= K(Yi), so K(Y ) ∼= S(Y )((0)).
Finally, if f ∈ O(Y ), then f is regular on each Yi, so f ∈ A(Yi) ∼= S(Y )(xi), so on each Yi,

f = gi/x
ki
i for some integer m with gi homogeneous of degree ki. Now, we want to show that

this implies that f is actually constant. We know xkii f ∈ S(Y )ki (the degree ki part). Choosing
N ≫ 0, this implies S(Y )N · f ⊂ S(Y )N , and even that S(Y )N · f q ⊂ S(Y )N for all q > 0. In

particular, it implies that, for any q > 0, xN0 f
q ∈ S(Y ), so S(Y )[f ] ⊂ x−N

0 S(Y ), so S(Y )[f ] is a
finitely generated S(Y )-module. This implies that f is integral over S(Y ), i.e. there exist ai ∈ S
such that (for some m > 0)

fm + a1f
m−1 + . . . am = 0.

As f was degree 0 and this holds for each graded piece, we may assume ai ∈ S(Y ) has degree
0, i.e. ai ∈ k, so f is actually algebraic over k. Therefore, because k is algebraically closed,
f ∈ k. □

Before we move on to sheaves and schemes more generally, we will discuss two fundamental
things about varieties that will appear often (e.g. in the learning seminar): birational maps and
nonsingularity. We will revisit them in more detail in the future!

2. Rational Maps and Blow-ups

We have shown already that every open set of an irreducible topological space is dense, so
encodes much of the information we want. With that motivation, in algebraic geometry, we will
often consider morphisms that are not defined everywhere, but just on an open set.

Definition 2.1. Let X and Y be varieties. A rational map ϕ : X 99K Y is an equivalence
class of pairs (U, ϕU ), where U ⊂ X is an open set and ϕU : U → Y is a morphism. Two pairs
(U, ϕU ) and (V, ϕV ) are equivalent if ϕU = ϕV on U ∩ V .

Definition 2.2. A rational map ϕ : X 99K Y is dominant if the image of U is dense in Y .

Definition 2.3. Two varieties X and Y are said to be birational if there is a rational map
ϕ : X 99K Y which admits an inverse ψ : Y 99K X.
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Example 2.4. The varieties P2 and P1 × P1 = Z(y0y1 − y2y3) ⊂ P3 are birational.
Suppose P2 has coordinates [x0 : x1 : x2]. We could consider the rational map defined on

the locus D(x0) ∼= A2
x1,x2

given by (x1, x2) 7→ (x1, x2, x1x2) ⊂ A3
y0,y1,y2 . The image is the affine

variety Z(y0y1 − y2), which is Z(y0y1 − y2y3) ∩D(y3) ⊂ P3.
On the affine pieces, this map is clearly invertible: (x1, x2, x1x2) 7→ (x1, x2). Therefore, it is

a birational map and shows that P2 and P1 × P1 are birational.
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