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1. Introduction to sheaves

Let Y be a variety, p ∈ Y , and U an open set containing p.

Definition 1.1. Define O(U) = {regular functions on U}. This will be called the structure
sheaf (once we know what sheaves are!).

Definition 1.2. The local ring of p ∈ Y is

OY,p = {germs of regular functions near p}.
This is defined with an equivalence relation: elements are pairs (U, f) where U is an open set
and f is a regular function at p. If U, V are open sets containing p, (U, f) = (V, g) if f = g on
U ∩ V .

Observe: if V ⊂ U ⊂ Y , then there is restriction map O(U) → O(V ). We could alternately
define the local ring at p as

OY,p = lim−→
p∈U

O(U).

This is called the local ring as it is actually a local ring: the maximal ideal is the ideal of
germs vanishing at p:

mY,p = {f ∈ OY,p | f(p) = 0}
and given any g ∈ OY,p not in mY,p, then g(p) ̸= 0 so 1/g is regular in some neighborhood of p,
i.e. g−1 ∈ OY,p. Consider the evaluation map OY,p → k given by f 7→ f(p). The kernel is mY,p,
so OY,p/mY,p

∼= k, i.e. mY,p is maximal. (Can check: this is the unique maximal ideal.)

Definition 1.3. Given a variety Y , the function field of Y is

K(Y ) = {(U, f) | U ⊂ Y open , f ∈ O(U)}/ ∼
where (U, f) ∼ (V, g) if f = g on U ∩ V .

The elements of K(Y ) are rational functions on Y .

This is a field! Because Y is irreducible, any two open sets intersect, and addition and
multiplication make sense (so it is a ring). For inverses, consider (U, f) ∈ K(Y ). Then, for any
f ̸= 0, let V = U − U ∩ Z(f), so (V, 1/f) ∈ K(Y ), and this is the inverse of (U, f).

Example 1.4. If Y = A1, O(Y ) = k[x], and OY,p
∼= k[x](x). (Why? Maybe this is intuitively

clear, but we will prove it in general momentarily.)

Some other remarks:

Remark 1.5. (1) There is always an embedding OY,p ↪→ K(Y ), and K(Y ) = ∪p∈Y OY,p.
(2) The restriction map O(U) → O(V ) is injective (if two functions agree on an open subset

V ⊂ U , they agree on U by density of open sets). So, for all p ∈ Y , there is a natural
injective restriction map O(Y ) ↪→ OY,p, and O(Y ) = ∩p∈Y OY,p.

(3) By definition of regular function and isomorphism, if Y and Y ′ are isomorphic varieties,
then these rings O(Y ), Op, K(Y ) are isomorphic to O(Y ′), Op′ , K(Y ′).

Before generalizing this construction, let us relate it to the rings we already know.
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Theorem 1.6. If Y ⊂ An is an affine variety, let A(Y ) be its affine coordinate ring. Then:

(1) O(Y ) ∼= A(Y )
(2) For each p ∈ Y , define mp = {f ∈ A(Y ) | f(p) = 0}. The correspondence p 7→ mp is a

one-to-one correspondence between points of Y and maximal ideals in A(Y ).
(3) For each p ∈ Y , Op

∼= A(Y )mp and dimOp = dimY .
(4) The field K(Y ) is isomorphic to the fraction field of A(Y ) (so, K(Y ) is a finitely

generated field extension of k and trdegkK(Y ) = dimY .

We’ll use the following algebra theorem (from last week) in the proof; adding it here for
convenience of the reader.

Theorem 1.7. If k is a field and B is an integral domain that is finitely generated as a k-algebra,
then:

(1) dimB = trdegkFrac(B)
(2) For any prime ideal I ⊂ B, heightI + dimB/I = dimB.

Now, onto the proof of the theorem.

Proof. We start with (2): let α : A(Y ) → O(Y ) be inclusion (each polynomial f ∈ A(Y )
is a regular function on Y ), which is injective. From the correspondence between Z and I
earlier, we know the points of Y (minimal algebraic subsets) correspond to maximal ideals of
A = k[x1, . . . , xn] containing I(Y ), which are precisely the maximal ideals of A(Y ), and the
correspondence exactly matches a point p ∈ Y to I(p) = {f ∈ A(Y ) | f(p) = 0} = mp.

Now, to prove (3): for each p ∈ Y , there is a map (induced by α) αp : A(Y )mp → Op, which
is injective because α is injective, and surjective because, by definition, a regular function at p
is f/g where g(p) ̸= 0, i.e. g ∈ A(Y )−mp, i.e. f/g ∈ A(Y )mp . Therefore, it is an isomorphism.
This shows A(Y )mp

∼= Op, and because mp is maximal, dimOp = heightmp, so by the algebra
theorem above (as A(Y )/mp = k) we see that dimOp = dimA(Y ) = dimY .

For (4): the fraction field of A(Y ) is isomorphic to the fraction field of Op (for any p), which
is just K(Y ) by definition. Because A(Y ) is finitely generated over k, his proves that K(Y ) is a
finitely generated field extension of k, and again by the algebra fact, dimY is the transcendence
degree.

Finally, we prove (1). By the remark above, O(Y ) ⊂ ∩p∈Y Op, and therefore

A(Y ) ⊂ O(Y ) ⊂ ∩mpA(Y )mp .

But, because A(Y ) is an integral domain, it is equal to the intersection of its localizations at
maximal ideas, so all three are equal and we have A(Y ) ∼= O(Y ). □

This construction is an example of a sheaf.

Definition 1.8. Let X be a topological space. A presheaf F of abelian groups on X is the
data of:

(1) For every open set U ⊂ X, an abelian group F(U), and F(∅) = 0
(2) For every V ⊂ U , there is a ρUV : F(U) → F(V ) such that ρUU = id and if W ⊂ V ⊂ U ,

ρUW = ρVW ◦ ρUV

Definition 1.9. Let X be a topological space. A sheaf F on X is a presheaf F satisfying the
following additional conditions:

(1) For any open set U ⊂ X and open cover U = ∪Vα, if s ∈ F(U) such that ρUVα(s) = 0
for each α, then s = 0. (If s ‘restricts’ to 0 on each open set, then is is 0.)
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(2) For any open U and open cover U = ∪Vα, if for each α there exists sα ∈ F(Vα) such
that ρVα(V α∩Vβ)sα = ρVβ(V α∩Vβ)sβ, then there exists s ∈ F(U) such that ρUVα)(s) = sα.

(If there exists a collection of s’s on the open cover that agree on the overlaps, they can
be ‘glued’ together to an s on the whole set.)

Example 1.10. Sheaves exist beyond the context of algebraic geometry. If X is a (smooth)
manifold, we have several natural sheaves on X: the sheaf of continuous functions, the sheaf of
differentiable functions, ..., the sheaf of infinitely differentiable functions, ... .

Definition 1.11. If F is a sheaf on X and U ⊂ X is an open set, an element s ∈ F(U) is called
a section of F over U . An element s ∈ F(X) is called a global section of F .

Definition 1.12. If X is a variety, the sheaf OX is called the structure sheaf of X.

Example 1.13. On an affine variety X, the global sections of the structure sheaf OX are
OX(X) = A(X) (polynomial functions on X).
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