ALGEBRAIC GEOMETRY: WEDNESDAY, FEBRUARY 15

1. Morphisms

Let X be a quasi-affine variety in \mathbb{A}^{n}.
Definition 1.1. A function $f: X \rightarrow k$ is regular at $p \in Y$ if there is an open neighborhood $p \in U$ and polynomials $g, h \in A=k\left[x_{1}, \ldots, x_{n}\right]$ such that $h \neq 0$ on U and $f=g / h$ on U. A function f regular on Y if it is regular at every point.
Example 1.2. Let $\bar{X}=Z(x y-z t) \subset \mathbb{A}^{4}$. Let $W=Z(y, t)$ and let $X=\bar{X}-W$.
Then, the function $f: X \rightarrow k$ defined by

$$
f=\left\{\begin{array}{cc}
z / y & y \neq 0 \\
x / t & t \neq 0
\end{array}\right.
$$

is a well-defined regular function on X.
Lemma 1.3. A regular function is continuous (where k is thought of as \mathbb{A}_{k}^{1} with the Zariski topology).
Proof. Consider $f: X \rightarrow \mathbb{A}^{1}$. We must show f^{-1} of a closed set is closed. This is clear for \emptyset and \mathbb{A}^{1}, and the only other closed sets of \mathbb{A}^{1} are finite sets, so it suffices to show for a single point. Let $a \in \mathbb{A}^{1}$ and consider $f^{-1}(a)=\{p \in X \mid f(p)=a\}$.

Topology fact: if X is a topological space with open cover $X=\cup U_{\alpha}$ and $W \subset X$, then W is closed if and only if $W \cap U_{\alpha}$ is closed for each U_{α}.

By the topology fact, we consider a covering of X by open neighborhoods U_{α} such that on each $U_{\alpha}, f=g_{\alpha} / h_{\alpha}$. But, on U_{α},

$$
\begin{aligned}
f^{-1}(a) & =\{p \in X \mid f(p)=a\} \\
& =\left\{p \in X \mid g_{\alpha}(p) / h_{\alpha}(p)=a\right\} \\
& =\left\{p \in X \mid g_{\alpha}(p)-a h_{\alpha}(p)=0\right\} \\
& =Z\left(g_{\alpha}-a h_{\alpha}\right)
\end{aligned}
$$

so $f^{-1}(a)$ is closed.
We have a similar definition (and the same lemma) for quasi-projective varieties.
Definition 1.4. If X is quasi-projective, a function $f: X \rightarrow k$ is regular at $p \in X$ is there is an open neighborhood $p \in U$ and homogeneous polynomials $g, h \in S$ with $\operatorname{deg} g=\operatorname{deg} h$ such that $h \neq 0$ on U and $f=g / h$ on U. A function f is regular on X if it is regular at every point.

Remark 1.5. Suppose that f and g are regular functions on a variety (affine or projective) X, and $f=g$ on some open neighborhood U of X. Then, $Z(f-g)$ is closed but contains the dense set U, so $Z(f-g)=X$, and hence $f=g$ on X.

Definition 1.6. Suppose $k=\bar{k}$. The category of varieties over k is \mathcal{V} ar whose objects are varieties (affine, quasi-affine, projective, or quasi-projective) and whose morphisms are continuous functions $\phi: X \rightarrow Y$ such that, for every open set $V \subset Y$ and for every regular function $f: V \rightarrow k$, the function $f \circ \phi: \phi^{-1}(V) \rightarrow k$ is regular.

Exercise 1.7. The composition of two morphisms is a morphism. This category is in fact a category.

Exercise 1.8. A function $\phi: X \rightarrow Y$ is a morphism if and only if for some open cover $Y=\cup V_{\alpha}$, for every regular function $f: V_{\alpha} \rightarrow k$, the function $f \circ \phi: \phi^{-1}\left(V_{\alpha}\right) \rightarrow k$ is regular.

Definition 1.9. A morphism $\phi: X \rightarrow Y$ is an isomorphism if there exists a morphism $\psi: Y \rightarrow X$ such that $\phi \circ \psi$ and $\psi \circ \phi$ are the identity functions.

Exercise 1.10. The functions $\phi_{i}: U_{i}=\mathbb{P}^{n}-Z\left(x_{i}\right) \rightarrow \mathbb{A}^{n}$ from last time are isomorphisms.
Example 1.11. Consider $Z\left(x^{3}-y^{2}\right) \subset \mathbb{A}^{2}$. This is the image of the morphism $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ given by $\phi(t)=\left(t^{2}, t^{3}\right)$. and ϕ is a homeomorphism but not an isomorphism: the inverse function is not a morphism (homework: check this!) and these two are not isomorphic.

Definition 1.12. A variety X is affine (resp. quasi-affine, projective, quasi-projective) if it is isomorphic to one.

Example 1.13. Let $V \subset \mathbb{A}^{n}$ be an affine variety and $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Then, $X=V-Z(f)$ is affine. (But! X is not necessarily an affine variety in \mathbb{A}^{n}; it is just isomorphic to one.)

One example: Let $V=\mathbb{A}^{1}$ and $f=x$. Then, $X=V-Z(f)$ is the x-axis with the origin removed. This itself is not an affine variety, but it is isomorphic to the hyperbola $Z(x y-1)$.

To prove X is affine in general: consider projection $\pi: \mathbb{A}^{n+1} \rightarrow \mathbb{A}^{n}$ given by

$$
\pi\left(x_{1}, \ldots, x_{n+1}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)
$$

Let $Y \subset \mathbb{A}^{n+1}$ be $Y=Z\left(x_{n+1} f-1\right) \cap \pi^{-1}(V)$ and let $\phi: X \rightarrow Y$ be

$$
\phi\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{n}, 1 / f\left(a_{1}, \ldots, a_{n}\right)\right)
$$

Note that π is the inverse of ϕ on X. Check that ϕ is a morphism to show that $X \cong Y$, which is affine.

