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1. Projective Varieties

Let k = k.

Definition 1.1. Projective n-space over k is

Pn = (An+1 − (0, . . . , 0))/ ∼
where ∼ is the equivalence relation (a0, . . . , an) ∼ (λa0, . . . , λan) for 0 ̸= λ ∈ k.

A point p ∈ Pn is a choice of coordinates (a0, . . . , an) in a given equivalence class, called
homogeneous coordinates. We usually denote points in p by p = [a0 : · · · : an].

This is the quotient of non-zero points in An+1 where points on the same line through the
origin are identified with each other.

To define varieties in this space, we will need to work with zero sets of polynomials that are in-
variant under this equivalence relation, which means we want only homogeneous polynomials: if
f(x0, . . . , xn) is a homogeneous polynomial of degree d, then f(λx0, . . . , λxn) = λdf(x0, . . . , xn),
so f being zero at p = [a0 : · · · : an] is well-defined on the equivalence class of p.

To make the appropriate definitions, we first consider graded rings.

Definition 1.2. A graded ring S is a ring S with a decomposition

S = ⊕d≥0Sd

where each Sd is an abelian group and for any d1, d2, Sd1 · Sd2 ⊂ Sd1+d2 .
An element f ∈ Sd is called a homogeneous element of degree d. An ideal I ⊂ S is a

homogeneous ideal if I = ⊕d≥0(I ∩ Sd).

Some commutative algebra facts:

Remark 1.3. An ideal I is homogeneous if and only if it is generated by homogeneous elements.
Sums, products, intersections, and radicals of homogeneous ideals are homogeneous. Primality
of homogeneous ideals is determined by considering homogeneous elements.

Let S = k[x0, . . . , xn]. Then, S is a graded ring where Sd is the set of all homogeneous degree
d polynomials. As we pointed out above, being in the zero locus of f ∈ Sd is well-defined on
equivalence classes p = [a0 : · · · : an], so we can talk about the zero locus of polynomials (or sets
of polynomials) in Pn.

Definition 1.4. If f is a homogeneous polynomial f ∈ Sd, the zero locus of f is

Z(f) = {p ∈ Pn | f(p) = 0}.
If T is any set of homogeneous elements of S, then the zero locus of T is

Z(T ) = {p ∈ Pn | f(p) = 0∀f ∈ T}.
If I ⊂ S is a homogeneous ideal, let T be the set of all homogeneous elements in I (which is

generated by a finite set since S is noetherian). We define Z(I) = Z(T ).

Definition 1.5. A subset Y ⊂ Pn is an algebraic set if Y = Z(T ) for some set T of homogeneous
elements.
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We leave it as an exercise to verify (just as we did for the affine case) that the Zariski topology
defined by taking the closed subsets to be the algebraic sets is indeed a topology.

Definition 1.6. A projective variety is an irreducible algebraic set in Pn. An open subset of
a projective variety is a quasi-projective variety.

The dimension of a projective variety is its dimension as a topological space.
The homogeneous ideal of a projective variety Y is the ideal generated by

I(Y ) = ⟨{f ∈ S | f homogeneous, f(p) = 0∀p ∈ Y }⟩.

The homogeneous coordinate ring of Y is S(Y ) = S/I(Y ).

Exercise 1.7. Prove that Pn is a noetherian topological space.

Exercise 1.8. Prove the Nullstellensatz for homogeneous ideals (which gives the same corre-
spondence for Z and I as in the affine case, provided we throw out the irrelevant ideal, see
Hartshorne Ch.1 Exercise 2.4).

It turns out that projective varieties are covered by affine varieties in the following way:
If f ∈ S1 is a linear homogeneous polynomial, consider the zero set Z(f) (called a hyperplane).

To fix notation, if f = xi for 0 ≤ i ≤ n, let Hi = Z(xi). Let Ui = Hc
i = Pn − Ui. These sets Ui

are commonly denoted D(xi) (the D here indicates ‘doesn’t vanish’). If p ∈ Pn, p = [a0 : · · · : an]
with at least one ai ̸= 0, so p ∈ Ui for some i, so the sets Ui = D(xi) form an open covering of
Pn.

Claim. For each i, D(xi) is homeomorphic to An.
Consider the map

ϕi : D(xi) → An

defined by

ϕi([a0 : · · · : an]) = (a0/ai, . . . , âi/ai, . . . , an/ai).

This is well-defined because the ratio aj/ai is independent of choice of representative of the
equivalence class of p.

Similarly, we have

ϕ−1
i : An → D(xi)

given by

ϕ−1
i (b1, . . . , bn) = [b0 : · · · : 1 : · · · : bn]

where the 1 is in the ith spot.
This shows ϕi is a bijection: if ai ̸= 0, we can choose a representative of p where ai = 1, and

in this case ϕi is

ϕi([b0 : · · · : 1 : · · · : bn]) = (b0, . . . , 1̂, . . . , bn).

To show it is a homeomorphism, we will show ϕi and ϕ−1
i are closed maps. For notational

simplicity, assume that i = 0.
Let Sh be the set of homogeneous elements of S. Define the function α : Sh → A = k[y1, . . . , yn]

by α(f) = f(1, y1, . . . , yn) and the function β : A → Sh by β(g) = xdeg g0 g(x1/x0, . . . , xn/x0). To

see that ϕ0 is a homeomorphism, take any closed set Y ⊂ U0 and its closure Y ⊂ Pn, which is
an algebraic set Y = Z(T ) for some T ⊂ Sh. Then, ϕ0(Y ) = Z(α(T )) which is a closed subset
of An. Similarly, if W is a closed subset of An, W = Z(T ′) and ϕ−1

0 (W ) = Z(β(T ′)) ∩ U , which
is a closed subset of U .

Therefore, Pn has an open cover by affine open sets isomorphic to An. Furthermore, if Y is
any projective variety, it has an open cover by affine varieties Y ∩ Ui.
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Example 1.9. We commonly use these functions α and β to convert projective varieties to
affine varieties and vice versa.

For example, if Y = V (xy− z2) ⊂ P2, then P2 is covered by three charts D(x)∪D(y)∪D(z),
and to get the corresponding variety on each chart, we set that variable ‘equal to 1’ via the map
α (technically, we are changing the other two variables to the quotient by the first variable, but
we usually don’t write this). So, on D(x), we get Y ∩ D(x) = V (y − z2) which is a parabola,
and on D(z), we get Y ∩D(z) = V (xy − 1) which is a hyperbola. To go from an affine variety
to a projective one, we would homogeneize (think of the map β above): so, if we started with
V (xy − 1) ⊂ A2, the corresponding object in P2 would be replacing x, y with x/z, y/z and
multiplying by z2 to get V (xy − z2).
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