ALGEBRAIC GEOMETRY: FRIDAY, FEBRUARY 10

1. Dimension

Reminders from last time:
Theorem 1.1. There is an inclusion-reversing bijection between algebraic sets $\{Y\}$ in \mathbb{A}^{n} and radical ideals $\{J\}$ in A, given by $Y \mapsto I(Y)$ and $J \mapsto Z(J)$.
Proposition 1.2. An algebraic set Y is irreducible if and only if $I(Y)$ is a prime ideal.
Example 1.3. Suppose $f \in A$ is an irreducible polynomial. Then (f) is prime, so $Y=Z(f) \subset \mathbb{A}^{n}$ is irreducible. If $n=2$, then Y is called an affine curve. If $n=3$, then Y is a surface. If $n>3$, then Y is a hypersurface.

Example 1.4. If $p=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}$ is a point, it is irreducible, so $I(p)=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ is a maximal ideal in A. (Minimal irreducible closed subset $=$ maximal ideal.)

Definition 1.5. If $Y \subset \mathbb{A}^{n}$ is an algebraic set, then the affine coordinate ring of Y is the ring $A(Y)=A / I(Y)$.

The affine coordinate ring is the ring of functions on Y. Because $I(Y)$ is the ideal of functions vanishing on Y, any two elements of A differing by something in $I(Y)$ determine the same function on Y.

Note that, if Y is a variety (meaning it is an irreducible algebraic set), then $A(Y)$ is an integral domain because $I(Y)$ is prime, and it is a finitely generated k-algebra. Conversely, any finitely generated k-algebra B that is an integral domain can arise as the coordinate ring of some affine variety: write $B=k\left[x_{1}, \ldots, x_{n}\right] / J$ and let $Y=Z(J)$.
Definition 1.6. A topological space is noetherian if every descending chain of closed subsets stabilizes: for any sequence $Y_{1} \supset Y_{2} \supset \ldots$ of closed subsets, eventually we have $Y_{r}=Y_{r+1}=\ldots$.

Example 1.7. \mathbb{A}^{n} is noetherian: given any $Y_{1} \supset Y_{2} \supset \ldots$, we have $I\left(Y_{1}\right) \subset I\left(Y_{2}\right) \subset \ldots$, but these are ideals in the noetherian ring A, so this stabilizes with $I\left(Y_{r}\right)=I\left(Y_{r+1}\right)=\ldots$, so by the correspondence between Y_{i} and $Z\left(I\left(Y_{i}\right)\right)$, we have $Y_{r}=Y_{r+1}=\ldots$.

Proposition 1.8. If X is noetherian, then every nonempty closed subset $Y \subset X$ can be written as $Y=Y_{1} \cup \cdots \cup Y_{r}$ where each Y_{i} is an irreducible closed subset of X. Furthermore, if $Y_{i} \not \supset Y_{j}$ for all $i \neq j$, then this is unique up to reordering.
Proof. Let $\mathcal{M}=\left\{\emptyset \neq Y \subset X \mid \nexists\right.$ decomposition $Y=Y_{1} \cup \cdots \cup Y_{r}: Y_{i}$ irreducible $\}$. Because X is noetherian, if \mathcal{M} is not empty, it has a minimal element Y. Because $Y \in \mathcal{M}$, it is not irreducible, so $Y=Y_{1} \cup Y_{2}$ and $Y_{1}, Y_{2} \neq Y$. But, Y was the minimal element of \mathcal{M}, so $Y_{1}, Y_{2} \notin \mathcal{M}$. Therefore, Y can be written as the union of the decomposition of Y_{1} and Y_{2}, contradicting that \mathcal{M} is not empty.

Now, suppose $Y=Y_{1} \cup \cdots \cup Y_{r}=Z_{1} \cup \cdots \cup Z_{q}$. Because $Y_{i} \subset Z_{1} \cup \cdots \cup Z_{q}$ and Y_{i} is irreducible, we must have $Y_{i} \subset Z_{j}$ for some j. Similarly, $Z_{j} \subset Y_{k}$ for some k. Since $Y_{i} \not \subset Y_{k}$ for $i \neq k$ by assumption, this implies $Y_{i}=Y_{k}=Z_{j}$. This holds for any i, so we conclude the decompositions are equal up to reordering.

Corollary 1.9. If $Y \subset \mathbb{A}^{n}$ is an algebraic set, then $Y=Y_{1} \cup \cdots \cup Y_{r}$ for unique varieties Y_{i}. These are called the irreducible components of Y.

Definition 1.10. If X is a topological space, the dimension of X is

$$
\operatorname{dim} X=\sup _{m}\left\{\exists \emptyset \neq Z_{0} \subsetneq Z_{1} \subsetneq \cdots \subsetneq Z_{m} \subset X \mid Z_{i} \text { irreducible }\right\}
$$

If X is an affine or quasi-affine variety, its dimension is defined to be its dimension as a topological space.

Example 1.11. $\operatorname{dim} \mathbb{A}^{1}=1$ because the only non-empty irreducible closed subsets are single points or the whole space, so the maximal chain we can have is $p \subset \mathbb{A}^{1}$ (for some $p \in \mathbb{A}^{1}$).

Exercise 1.12. If Y is an affine algebraic set, then $\operatorname{dim} Y$ (as a topological space) is equal to $\operatorname{dim} A(Y)$ (Krull dimension as a ring).

In other words, we can relation dimension of rings to dimension of varieties and algebraic sets, often via the following (the proof should be in Matsumura):
Theorem 1.13. If k is a field and B is an integral domain that is finitely generated as a k-algebra, then:
(1) $\operatorname{dim} B=\operatorname{trdeg}_{k} \operatorname{Frac}(B)$
(2) For any prime ideal $I \subset B$, height $I+\operatorname{dim} B / I=\operatorname{dim} B$.

Corollary 1.14. $\operatorname{dim} \mathbb{A}^{n}=n$.
Proof. By the exercise, $\operatorname{dim} \mathbb{A}^{n}=\operatorname{dim} k\left[x_{1}, \ldots, x_{n}\right]$, and by part (1) of the theorem, this is equal to n.
Proposition 1.15. If $Y \subset \mathbb{A}^{n}$ is quasi-affine, then $\operatorname{dim} Y=\operatorname{dim} \bar{Y}$.
Proof. Consider a chain $Z_{0} \subsetneq Z_{1} \subsetneq \cdots \subsetneq Z_{r} \subset Y$. Then, taking the closure, we get

$$
\overline{Z_{0}} \subsetneq \overline{Z_{1}} \subsetneq \cdots \subsetneq \overline{Z_{r}} \subset \bar{Y}
$$

where $\overline{Z_{i}}$ is irreducible because Z_{i} is, and because $Z_{i}=\overline{Z_{i}} \cap Y, \overline{Z_{i}} \neq \overline{Z_{j}}$. So, $\operatorname{dim} Y \leq \operatorname{dim} \bar{Y}$.
This implies $\operatorname{dim} Y=n$ is finite, so choose a maximal length chain $Z_{0} \subsetneq Z_{1} \subsetneq \cdots \subsetneq Z_{n} \subset Y$. Because this is maximal, Z_{0} must be a point p. Because each $Z_{i} \subset \overline{Z_{i}}$ is dense, taking the closure gives a maximal chain, and $p=\overline{Z_{0}}$ is a maximal ideal m in $A(\bar{Y})$. The \bar{Z}_{i} for $i>0$ correspond to prime ideals contained in m, so height $m=n$, and $A(\bar{Y}) / m=k$, so by the second part of the theorem above, $\operatorname{dim} \bar{Y}=n$.

For certain affine algebraic sets, we can use this to further connect the algebra and the geometry.

Reminder of some results in commutative algebra:
Theorem 1.16 (Krull's Principal Ideal Theorem). If B is a noetherian ring and $f \in B$ is neither a zero divisor nor a unit, then every minimal prime ideal I containing f has height 1.

Theorem 1.17. A noetherian integral domain B is a UFD if and only if every prime ideal of height 1 is principal.

These have a geometric meaning!
Theorem 1.18. A variety Y in \mathbb{A}^{n} has dimension $n-1$ if and only if is the zero set $Z(f)$ of a single non-constant irreducible polynomial $f \in A$.
Proof. If f is irreducible, then $Z(f)$ is a variety and its ideal is $I=(f)$. By Krull's Principal Ideal Theorem, I has height 1 , so by an earlier theorem, $Y=Z(f)$ has dimension $n-1$.

Now, suppose Y has dimension $n-1$. This corresponds to a prime ideal I of height 1 , and A is a UFD, so $I=(f)$ is principal by the previous theorem. So, $Y=Z(f)$ and f is an irreducible polynomial.

Exercise 1.19. $Y_{1}=Z\left(y-x^{2}\right) \subset \mathbb{A}^{2}$ and $Y_{2}=Z(x y-1) \subset \mathbb{A}^{2}$ are 1-dimensional varieties. Show that $A\left(Y_{1}\right)$ is isomorphic to a polynomial ring in one variable over k but $A\left(Y_{2}\right)$ is not.

Exercise 1.20. Find a variety $Y \subset \mathbb{A}^{3}$ such that $\operatorname{dim} Y=1$ but $I(Y)$ cannot be generated by 2 elements (so the previous theorem does not hold for varieties with higher codimension).

