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1. Dimension

Reminders from last time:

Theorem 1.1. There is an inclusion-reversing bijection between algebraic sets {Y } in An and
radical ideals {J} in A, given by Y 7→ I(Y ) and J 7→ Z(J).

Proposition 1.2. An algebraic set Y is irreducible if and only if I(Y ) is a prime ideal.

Example 1.3. Suppose f ∈ A is an irreducible polynomial. Then (f) is prime, so Y = Z(f) ⊂ An

is irreducible. If n = 2, then Y is called an affine curve. If n = 3, then Y is a surface. If n > 3,
then Y is a hypersurface.

Example 1.4. If p = (a1, . . . , an) ∈ An is a point, it is irreducible, so I(p) = (x1−a1, . . . , xn−an)
is a maximal ideal in A. (Minimal irreducible closed subset = maximal ideal.)

Definition 1.5. If Y ⊂ An is an algebraic set, then the affine coordinate ring of Y is the
ring A(Y ) = A/I(Y ).

The affine coordinate ring is the ring of functions on Y . Because I(Y ) is the ideal of functions
vanishing on Y , any two elements of A differing by something in I(Y ) determine the same
function on Y .

Note that, if Y is a variety (meaning it is an irreducible algebraic set), then A(Y ) is an integral
domain because I(Y ) is prime, and it is a finitely generated k-algebra. Conversely, any finitely
generated k-algebra B that is an integral domain can arise as the coordinate ring of some affine
variety: write B = k[x1, . . . , xn]/J and let Y = Z(J).

Definition 1.6. A topological space is noetherian if every descending chain of closed subsets
stabilizes: for any sequence Y1 ⊃ Y2 ⊃ . . . of closed subsets, eventually we have Yr = Yr+1 = . . . .

Example 1.7. An is noetherian: given any Y1 ⊃ Y2 ⊃ . . . , we have I(Y1) ⊂ I(Y2) ⊂ . . . , but
these are ideals in the noetherian ring A, so this stabilizes with I(Yr) = I(Yr+1) = . . . , so by
the correspondence between Yi and Z(I(Yi)), we have Yr = Yr+1 = . . . .

Proposition 1.8. If X is noetherian, then every nonempty closed subset Y ⊂ X can be written
as Y = Y1 ∪ · · · ∪ Yr where each Yi is an irreducible closed subset of X. Furthermore, if Yi ̸⊃ Yj
for all i ̸= j, then this is unique up to reordering.

Proof. Let M = {∅ ≠ Y ⊂ X |̸ ∃ decomposition Y = Y1 ∪ · · · ∪ Yr : Yi irreducible }. Because
X is noetherian, if M is not empty, it has a minimal element Y . Because Y ∈ M, it is not
irreducible, so Y = Y1∪Y2 and Y1, Y2 ̸= Y . But, Y was the minimal element ofM, so Y1, Y2 /∈ M.
Therefore, Y can be written as the union of the decomposition of Y1 and Y2, contradicting that
M is not empty.

Now, suppose Y = Y1∪· · ·∪Yr = Z1∪· · ·∪Zq. Because Yi ⊂ Z1∪· · ·∪Zq and Yi is irreducible,
we must have Yi ⊂ Zj for some j. Similarly, Zj ⊂ Yk for some k. Since Yi ̸⊂ Yk for i ̸= k by
assumption, this implies Yi = Yk = Zj . This holds for any i, so we conclude the decompositions
are equal up to reordering. □

Corollary 1.9. If Y ⊂ An is an algebraic set, then Y = Y1 ∪ · · · ∪ Yr for unique varieties Yi.
These are called the irreducible components of Y .
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Definition 1.10. If X is a topological space, the dimension of X is

dimX = sup
m

{∃∅ ≠ Z0 ⊊ Z1 ⊊ · · · ⊊ Zm ⊂ X | Zi irreducible}.

If X is an affine or quasi-affine variety, its dimension is defined to be its dimension as a
topological space.

Example 1.11. dimA1 = 1 because the only non-empty irreducible closed subsets are single
points or the whole space, so the maximal chain we can have is p ⊂ A1 (for some p ∈ A1).

Exercise 1.12. If Y is an affine algebraic set, then dimY (as a topological space) is equal to
dimA(Y ) (Krull dimension as a ring).

In other words, we can relation dimension of rings to dimension of varieties and algebraic sets,
often via the following (the proof should be in Matsumura):

Theorem 1.13. If k is a field and B is an integral domain that is finitely generated as a
k-algebra, then:

(1) dimB = trdegkFrac(B)
(2) For any prime ideal I ⊂ B, heightI + dimB/I = dimB.

Corollary 1.14. dimAn = n.

Proof. By the exercise, dimAn = dim k[x1, . . . , xn], and by part (1) of the theorem, this is equal
to n. □

Proposition 1.15. If Y ⊂ An is quasi-affine, then dimY = dimY .

Proof. Consider a chain Z0 ⊊ Z1 ⊊ · · · ⊊ Zr ⊂ Y . Then, taking the closure, we get

Z0 ⊊ Z1 ⊊ · · · ⊊ Zr ⊂ Y

where Zi is irreducible because Zi is, and because Zi = Zi ∩ Y , Zi ̸= Zj . So, dimY ≤ dimY .
This implies dimY = n is finite, so choose a maximal length chain Z0 ⊊ Z1 ⊊ · · · ⊊ Zn ⊂ Y .

Because this is maximal, Z0 must be a point p. Because each Zi ⊂ Zi is dense, taking the closure
gives a maximal chain, and p = Z0 is a maximal ideal m in A(Y ). The Zi for i > 0 correspond
to prime ideals contained in m, so heightm = n, and A(Y )/m = k, so by the second part of the
theorem above, dimY = n. □

For certain affine algebraic sets, we can use this to further connect the algebra and the
geometry.

Reminder of some results in commutative algebra:

Theorem 1.16 (Krull’s Principal Ideal Theorem). If B is a noetherian ring and f ∈ B is
neither a zero divisor nor a unit, then every minimal prime ideal I containing f has height 1.

Theorem 1.17. A noetherian integral domain B is a UFD if and only if every prime ideal of
height 1 is principal.

These have a geometric meaning!

Theorem 1.18. A variety Y in An has dimension n− 1 if and only if it is the zero set Z(f) of
a single non-constant irreducible polynomial f ∈ A.

Proof. If f is irreducible, then Z(f) is a variety and its ideal is I = (f). By Krull’s Principal
Ideal Theorem, I has height 1, so by an earlier theorem, Y = Z(f) has dimension n− 1.

Now, suppose Y has dimension n− 1. This corresponds to a prime ideal I of height 1, and A
is a UFD, so I = (f) is principal by the previous theorem. So, Y = Z(f) and f is an irreducible
polynomial. □
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Exercise 1.19. Y1 = Z(y − x2) ⊂ A2 and Y2 = Z(xy − 1) ⊂ A2 are 1-dimensional varieties.
Show that A(Y1) is isomorphic to a polynomial ring in one variable over k but A(Y2) is not.

Exercise 1.20. Find a variety Y ⊂ A3 such that dimY = 1 but I(Y ) cannot be generated by
2 elements (so the previous theorem does not hold for varieties with higher codimension).
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