ALGEBRAIC GEOMETRY: FRIDAY, FEBRUARY 10

1. DIMENSION
Reminders from last time:

Theorem 1.1. There is an inclusion-reversing bijection between algebraic sets {Y'} in A™ and
radical ideals {J} in A, given by Y — I(Y) and J — Z(J).

Proposition 1.2. An algebraic set Y is irreducible if and only if I(Y') is a prime ideal.

Example 1.3. Suppose f € A is an irreducible polynomial. Then (f) is prime, soY = Z(f) C A"
is irreducible. If n = 2, then Y is called an affine curve. If n = 3, then Y is a surface. If n > 3,
then Y is a hypersurface.

Example 1.4. If p = (aq,...,a,) € A" is a point, it is irreducible, so I(p) = (x1—aq, ..., Tp—ay)
is a maximal ideal in A. (Minimal irreducible closed subset = maximal ideal.)

Definition 1.5. If Y C A" is an algebraic set, then the affine coordinate ring of Y is the
ring A(Y) = A/I(Y).

The affine coordinate ring is the ring of functions on Y. Because I(Y") is the ideal of functions
vanishing on Y, any two elements of A differing by something in I(Y) determine the same
function on Y.

Note that, if Y is a variety (meaning it is an irreducible algebraic set), then A(Y) is an integral
domain because I(Y') is prime, and it is a finitely generated k-algebra. Conversely, any finitely
generated k-algebra B that is an integral domain can arise as the coordinate ring of some affine
variety: write B = k[z1,...,xy,)/J and let Y = Z(J).

Definition 1.6. A topological space is noetherian if every descending chain of closed subsets
stabilizes: for any sequence Y1 D Y3 D ... of closed subsets, eventually we have Y, =Y, ,1 = ....

Example 1.7. A" is noetherian: given any Y7 D Y2 D ..., we have I(Y;) C I(Y2) C ..., but
these are ideals in the noetherian ring A, so this stabilizes with I(Y,) = I(Y,41) = ..., so by
the correspondence between Y; and Z(I(Y;)), we have Y, =Y, 11 =....

Proposition 1.8. If X is noetherian, then every nonempty closed subset’ Y C X can be written
as Y =Y, U---UY, where each Y; is an irreducible closed subset of X. Furthermore, if Y; 7Y
for all i # j, then this is unique up to reordering.

Proof. Let M = {0 #Y C X | A decomposition Y = Y; U---UY, : Y irreducible }. Because
X is noetherian, if M is not empty, it has a minimal element Y. Because Y € M, it is not
irreducible, so Y = YUY and Y7, Ys # Y. But, Y was the minimal element of M, so Y7, Ys ¢ M.
Therefore, Y can be written as the union of the decomposition of ¥; and Y5, contradicting that
M is not empty.

Now, suppose Y = Y1 U---UY, = Z1U---UZ,. Because Y; C Z1U---UZ, and Y] is irreducible,
we must have Y; C Z; for some j. Similarly, Z; C Y}, for some k. Since Y; ¢ Y}, for i # k by
assumption, this implies Y; = Y}, = Z;. This holds for any i, so we conclude the decompositions
are equal up to reordering. [l

Corollary 1.9. If Y C A" is an algebraic set, then Y = Y; U--- U Y, for unique varieties Y;.
These are called the irreducible components of Y.
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Definition 1.10. If X is a topological space, the dimension of X is
dimX =sup{I0 # 2o C 21 C -+ C Z, C X | Z; irreducible}.
m

If X is an affine or quasi-affine variety, its dimension is defined to be its dimension as a
topological space.

Example 1.11. dimA! = 1 because the only non-empty irreducible closed subsets are single
points or the whole space, so the maximal chain we can have is p C A! (for some p € A!).

Exercise 1.12. If Y is an affine algebraic set, then dimY" (as a topological space) is equal to
dim A(Y") (Krull dimension as a ring).

In other words, we can relation dimension of rings to dimension of varieties and algebraic sets,
often via the following (the proof should be in Matsumura):

Theorem 1.13. If k is a field and B is an integral domain that is finitely generated as a
k-algebra, then:

(1) dim B = trdeg;Frac(B)

(2) For any prime ideal I C B, height] 4+ dim B/I = dim B.

Corollary 1.14. dim A" = n.

Proof. By the exercise, dim A" = dim k[x1, ..., x,], and by part (1) of the theorem, this is equal
to n. 0

Proposition 1.15. IfY C A" is quasi-affine, then dimY = dimY .
Proof. Consider a chain Zy C Z; € --- C Z, C Y. Then, taking the closure, we get
HCZhiC - ChCY

where Z; is irreducible because Z; is, and because Z; = Z; Y, Z; %+ 7] So, dimY < dimY.
This implies dim Y = n is finite, so choose a maximal length chain Zp C Z; C --- C Z, C Y.
Because this is maximal, Zy must be a point p. Because each Z; C Z; is dense, taking the closure
gives a maximal chain, and p = Zj is a maximal ideal m in A(Y). The Z; for i > 0 correspond
to prime ideals contained in m, so heightm = n, and A(Y)/m = k, so by the second part of the
theorem above, dimY = n. O

For certain affine algebraic sets, we can use this to further connect the algebra and the
geometry.
Reminder of some results in commutative algebra:

Theorem 1.16 (Krull’s Principal Ideal Theorem). If B is a noetherian ring and f € B is
neither a zero divisor nor a unit, then every minimal prime ideal I containing f has height 1.

Theorem 1.17. A noetherian integral domain B is a UFD if and only if every prime ideal of
height 1 is principal.

These have a geometric meaning!

Theorem 1.18. A variety Y in A" has dimension n — 1 if and only if it is the zero set Z(f) of
a single non-constant irreducible polynomial f € A.

Proof. If f is irreducible, then Z(f) is a variety and its ideal is I = (f). By Krull’s Principal
Ideal Theorem, I has height 1, so by an earlier theorem, Y = Z(f) has dimension n — 1.

Now, suppose Y has dimension n — 1. This corresponds to a prime ideal I of height 1, and A
is a UFD, so I = (f) is principal by the previous theorem. So, Y = Z(f) and f is an irreducible
polynomial. [l
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Exercise 1.19. Y} = Z(y — 2?) C A2 and Y5 = Z(xy — 1) C A? are 1-dimensional varieties.
Show that A(Y1) is isomorphic to a polynomial ring in one variable over k£ but A(Y3) is not.

Exercise 1.20. Find a variety Y C A3 such that dimY = 1 but I(Y) cannot be generated by
2 elements (so the previous theorem does not hold for varieties with higher codimension).
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