ALGEBRAIC GEOMETRY: WEDNESDAY, FEBRUARY 8

1. Hilbert's Nullstellensatz

This is an essential result in commutative algebra that we need to understand the Zariski topology and algebraic varieties in more detail. Maybe you've already seen/proved it.

Theorem 1.1 (Weak Nullstellensatz). If $k=\bar{k}$, then every maximal ideal m in the ring $R=k\left[x_{1}, \ldots, x_{n}\right]$ is of the form $m=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$.

Proof. Because m is maximal, R / m is a field which is finitely generated as an algebra over k. Because $k=\bar{k}$, this implies $R / m=k$ (using 'Zariski's Lemma': K finitely generated algebra over k is a finite extension of k).

Let a_{i} be the image of x_{i} under the map $R \rightarrow R / m=k$. Then, $m^{\prime}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ is contained in m, but m^{\prime} is maximal, so in fact $m^{\prime}=m$.

Corollary 1.2. If f_{i} is a family of polynomials in R with no common zeros, then the ideal generated by the f_{i} 's is (1).

Proof. Suppose not. Then, the ideal generated by the f_{i} 's lies in some maximal ideal m which must be $m=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$, so $f_{i}\left(a_{1}, \ldots, a_{n}\right)=0$ for all i, contradicting that they have no common zeros.
Theorem 1.3 (Strong Nullstellensatz). If $k=\bar{k}$ and g, f_{1}, \ldots, f_{m} are polynomials in R such that g vanishes on the common zeros of f_{i}, then there exists $n>0$ such that $g^{n} \in\left(f_{1}, \ldots, f_{m}\right)$.
Proof. Consider the ideal generated by the polynomials $\left(f_{1}, \ldots, f_{m}, x_{n+1} g-1\right) \in k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$. These have no common zeros, so by the previous corollary, $\left(f_{1}, \ldots, f_{m}, x_{n+1} g-1\right)=(1)$, i.e. there are polynomials p_{i} such that

$$
1=p_{1} f_{1}+\cdots+p_{m} f_{m}+p_{m+1}\left(x_{n+1} g-1\right)
$$

Now plug in $x_{n+1}=1 / g$, which gives:

$$
1=p_{1}\left(x_{1}, \ldots, x_{n}, 1 / g\right) f_{1}+\cdots+p_{m}\left(x_{1}, \ldots, x_{n}, 1 / g\right) f_{m}
$$

and multiplying both sides by a power of g to clear denominators, we see that $g^{n} \in\left(f_{1}, \ldots, f_{m}\right)$.

2. Correspondence between Z and I

Let $k=\bar{k}$ and $A=k\left[x_{1}, \ldots, x_{n}\right]$.
Recall the definition of Z ('zeros') from Monday:
Definition 2.1. If $T \subset A$, then $Z(T)=\left\{p \in \mathbb{A}^{n} \mid f(p)=0 \forall f \in T\right\}$.
A new definition:
Definition 2.2. If $Y \subset \mathbb{A}^{n}$, define the ideal of Y to be $I(Y)=\{f \in A \mid f(p)=0 \forall p \in Y\}$.
The goal of this section is to prove the following:
Theorem 2.3. There is an inclusion-reversing bijection between algebraic sets in \mathbb{A}^{n} and radical ideals in A, given by $Y \mapsto I(Y)$ and $I \mapsto Z(I)$.

This will be a consequence of the following proposition.
Proposition 2.4. (1) If $T_{1} \subset T_{2} \subset A$, then $Z\left(T_{2}\right) \subset Z\left(T_{1}\right)$.
(2) If $Y_{1} \subset Y_{2} \subset \mathbb{A}^{n}$, then $I\left(Y_{2}\right) \subset I\left(Y_{1}\right)$.
(3) If $Y_{1}, Y_{2} \subset \mathbb{A}^{n}$, then $I\left(Y_{1} \cup Y_{2}\right)=I\left(Y_{1}\right) \cap I\left(Y_{2}\right)$.
(4) For any ideal $I \subset A, I(Z(I))=\sqrt{I}$ (the radical of I).
(5) For any $Y \subset \mathbb{A}^{n}, Z(I(Y))=\bar{Y}$.

Proof. (1) - (3) are clear (if not, try as homework, and come ask me!).
It remains to prove (4) and (5). For (4), write $I=\left(f_{1}, \ldots, f_{m}\right)$ for some generators f_{i}, so $Z(I)$ is the common zero locus of the f_{i} 's. If $g \in I(Z(I))$, then g vanishes on the common zero locus of the f_{i} 's, so by the Nullstellensatz, $g^{n} \in I$ so $g \in \sqrt{I}$. Also, if $g \in \sqrt{I}$, then $g^{n} \in I$ for some n, so g^{n} vanishes on the common zero locus of the f_{i} 's and therefore so does g. In particular, $g \in I(Z(I))$. Therefore, $I(Z(I))=\sqrt{(} I)$.

For (5), Consider $Z(I(Y))$. Because $Y \subset Z(I(Y))$ and $Z(I(Y))$ is closed, $\bar{Y} \subset Z(I(Y))$. Because \bar{Y} is closed, $\bar{Y}=Z(J)$ for some $J \subset A$. Now, $Y \subset \bar{Y}$ implies $I(\bar{Y}) \subset I(Y)$, but $J \subset I(\bar{Y})$, so $J \subset I(Y)$. Therefore, $Z(I(Y)) \subset Z(J)=\bar{Y}$, and hence $Z(I(Y))=\bar{Y}$.

Remark 2.5. (4) is false over non-algebraically closed fields! Can you come up with an example?
So, algebraic sets correspond to (radical) ideals in a very nice way. We can therefore use properties of commutative algebra to study them! For example:

Proposition 2.6. An algebraic set Y is irreducible if and only if $I(Y)$ is a prime ideal.
Proof. If Y is irreducible, consider $f g \in I(Y)$. To show $I(Y)$ is prime, we must show that either f or g is in $I(Y)$. Because $f g \in I(Y), Y=Z(I(Y)) \subset Z(f g)=Z(f) \cup Z(g)$, so $Y=(Y \cap Z(f)) \cup(Y \cap Z(g))$. Because Y is irreducible, without loss of generality we have $Y \subset Z(f)$, so $f \in I(Y)$.

Now assume that $I(Y)$ is a prime ideal, and suppose that $Y=Z(I(Y))=Y_{1} \cup Y_{2}$. This implies $I\left(Y_{1}\right) \cap I\left(Y_{2}\right)=I$, and I is prime, so without loss of generality we have $I=I\left(Y_{1}\right)$, so $Y=Y_{1}$ is irreducible.

Example 2.7. \mathbb{A}^{n} is irreducible because $I\left(\mathbb{A}^{n}\right)=(0)$ and (0) is prime.

