
ALGEBRAIC GEOMETRY: WEDNESDAY, FEBRUARY 8

1. Hilbert’s Nullstellensatz

This is an essential result in commutative algebra that we need to understand the Zariski
topology and algebraic varieties in more detail. Maybe you’ve already seen/proved it.

Theorem 1.1 (Weak Nullstellensatz). If k = k, then every maximal ideal m in the ring
R = k[x1, . . . , xn] is of the form m = (x1 − a1, . . . , xn − an).

Proof. Because m is maximal, R/m is a field which is finitely generated as an algebra over k.
Because k = k, this implies R/m = k (using ‘Zariski’s Lemma’: K finitely generated algebra
over k is a finite extension of k).

Let ai be the image of xi under the map R → R/m = k. Then, m′ = (x1 − a1, . . . , xn − an)
is contained in m, but m′ is maximal, so in fact m′ = m. □

Corollary 1.2. If fi is a family of polynomials in R with no common zeros, then the ideal
generated by the fi’s is (1).

Proof. Suppose not. Then, the ideal generated by the fi’s lies in some maximal ideal m which
must be m = (x1 − a1, . . . , xn − an), so fi(a1, . . . , an) = 0 for all i, contradicting that they have
no common zeros. □

Theorem 1.3 (Strong Nullstellensatz). If k = k and g, f1, . . . , fm are polynomials in R such
that g vanishes on the common zeros of fi, then there exists n > 0 such that gn ∈ (f1, . . . , fm).

Proof. Consider the ideal generated by the polynomials (f1, . . . , fm, xn+1g−1) ∈ k[x1, . . . , xn, xn+1].
These have no common zeros, so by the previous corollary, (f1, . . . , fm, xn+1g − 1) = (1), i.e.
there are polynomials pi such that

1 = p1f1 + · · ·+ pmfm + pm+1(xn+1g − 1)

Now plug in xn+1 = 1/g, which gives:

1 = p1(x1, . . . , xn, 1/g)f1 + · · ·+ pm(x1, . . . , xn, 1/g)fm

and multiplying both sides by a power of g to clear denominators, we see that gn ∈ (f1, . . . , fm).
□

2. Correspondence between Z and I

Let k = k and A = k[x1, . . . , xn].
Recall the definition of Z (‘zeros’) from Monday:

Definition 2.1. If T ⊂ A, then Z(T ) = {p ∈ An | f(p) = 0∀f ∈ T}.

A new definition:

Definition 2.2. If Y ⊂ An, define the ideal of Y to be I(Y ) = {f ∈ A | f(p) = 0∀p ∈ Y }.

The goal of this section is to prove the following:

Theorem 2.3. There is an inclusion-reversing bijection between algebraic sets in An and radical
ideals in A, given by Y 7→ I(Y ) and I 7→ Z(I).
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This will be a consequence of the following proposition.

Proposition 2.4. (1) If T1 ⊂ T2 ⊂ A, then Z(T2) ⊂ Z(T1).
(2) If Y1 ⊂ Y2 ⊂ An, then I(Y2) ⊂ I(Y1).
(3) If Y1, Y2 ⊂ An, then I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

(4) For any ideal I ⊂ A, I(Z(I)) =
√
I (the radical of I).

(5) For any Y ⊂ An, Z(I(Y )) = Y .

Proof. (1) - (3) are clear (if not, try as homework, and come ask me!).
It remains to prove (4) and (5). For (4), write I = (f1, . . . , fm) for some generators fi, so

Z(I) is the common zero locus of the fi’s. If g ∈ I(Z(I)), then g vanishes on the common zero

locus of the fi’s, so by the Nullstellensatz, gn ∈ I so g ∈
√
I. Also, if g ∈

√
I, then gn ∈ I

for some n, so gn vanishes on the common zero locus of the fi’s and therefore so does g. In
particular, g ∈ I(Z(I)). Therefore, I(Z(I)) =

√
(I).

For (5), Consider Z(I(Y )). Because Y ⊂ Z(I(Y )) and Z(I(Y )) is closed, Y ⊂ Z(I(Y )).
Because Y is closed, Y = Z(J) for some J ⊂ A. Now, Y ⊂ Y implies I(Y ) ⊂ I(Y ), but
J ⊂ I(Y ), so J ⊂ I(Y ). Therefore, Z(I(Y )) ⊂ Z(J) = Y , and hence Z(I(Y )) = Y . □

Remark 2.5. (4) is false over non-algebraically closed fields! Can you come up with an example?

So, algebraic sets correspond to (radical) ideals in a very nice way. We can therefore use
properties of commutative algebra to study them! For example:

Proposition 2.6. An algebraic set Y is irreducible if and only if I(Y ) is a prime ideal.

Proof. If Y is irreducible, consider fg ∈ I(Y ). To show I(Y ) is prime, we must show that
either f or g is in I(Y ). Because fg ∈ I(Y ), Y = Z(I(Y )) ⊂ Z(fg) = Z(f) ∪ Z(g), so
Y = (Y ∩ Z(f)) ∪ (Y ∩ Z(g)). Because Y is irreducible, without loss of generality we have
Y ⊂ Z(f), so f ∈ I(Y ).

Now assume that I(Y ) is a prime ideal, and suppose that Y = Z(I(Y )) = Y1 ∪ Y2. This
implies I(Y1) ∩ I(Y2) = I, and I is prime, so without loss of generality we have I = I(Y1), so
Y = Y1 is irreducible. □

Example 2.7. An is irreducible because I(An) = (0) and (0) is prime.
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