MARCH 5 NOTES

1. 14.2: The Fundamental Theorem of Galois Theory

Our goal is to prove the Fundamental Theorem of Galois Theory. Here's where we left off:
Theorem 1.1. If $\sigma_{1}, \ldots, \sigma_{n}$ are distinct embeddings of K into L, then they are linearly independent over L.

Theorem 1.2. Let K be a field and $G=\left\{1=: \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ be a subgroup of $\operatorname{Aut}(K)$. Let F be the fixed field. Then, $[K: F]=n=|G|$.

Proof. Suppose first the $n>[K: F]$. Last time, we used linear algebra to get a contradiction.
Now, suppose $n<[K: F]$. We do more linear algebra. This implies there are more than n basis vectors for K over F; let k_{1}, \ldots, k_{n+1} be $n+1$ of them. Then, the system

$$
\begin{gathered}
\sigma_{1}\left(k_{1}\right) x_{1}+\sigma_{1}\left(k_{2}\right) x_{2}+\cdots+\sigma_{1}\left(k_{n+1}\right) x_{n+1}=0 \\
\cdots \\
\sigma_{n}\left(k_{1}\right) x_{1}+\sigma_{n}\left(k_{2}\right) x_{2}+\cdots+\sigma_{n}\left(k_{n+1}\right) x_{n+1}=0
\end{gathered}
$$

has n equations in $n+1$ unknowns so has a nontrivial solution $\beta_{1}, \ldots, \beta_{n+1}$. The elements β_{i} cannot all be elements of F : in the first equation, σ_{1} is the identity, and if each β_{i} were in F, this would give a nontrivial relation among the basis vectors $\left\{k_{1}, \ldots, k_{n+1}\right\}$.

Now, among all nontrivial solutions $\beta_{1}, \ldots, \beta_{n+1}$, choose the one with the minimal number r of nonzero β_{i} and renumber and divide by β_{r} to assume we have a system of equations (\star) (for each $1 \leq i \leq n)$:

$$
\sigma_{i}\left(k_{1}\right) \beta_{1}+\cdots+\sigma_{i}\left(k_{r-1}\right) \beta_{r-1}+\sigma_{i}\left(k_{r}\right)=0 .
$$

As at least one of the $\beta_{i} \notin F$, we may assume $\beta_{1} \notin F$. However, since $\beta_{1} \notin F$, it is not fixed by at least one element σ_{l}, i.e. $\sigma_{l}\left(\beta_{1}\right) \neq \beta_{1}$. Applying this automorphism to each of the previous equations, we have

$$
\sigma_{l} \sigma_{i}\left(k_{1}\right) \sigma_{l}\left(\beta_{1}\right)+\cdots+\sigma_{l} \sigma_{i}\left(k_{r-1}\right) \sigma_{l}\left(\beta_{r-1}\right)+\sigma_{l} \sigma_{i}\left(k_{r}\right)=0
$$

But, because G is a group, the set $\left\{\sigma_{l} \sigma_{i}\right\}_{i=1}^{n}$ is equal to G, and therefore (letting σ_{j} be the element $\sigma_{l} \sigma_{i}$, we have the system of equations $(\dagger) 1 \leq j \leq n$

$$
\sigma_{j}\left(k_{1}\right) \sigma_{l}\left(\beta_{1}\right)+\cdots+\sigma_{j}\left(k_{r-1}\right) \sigma_{j}\left(\beta_{r-1}\right)+\sigma_{j}\left(k_{r}\right)=0
$$

Finally, subtracting the equations \dagger from the equations \star, we have a system of equations

$$
\sigma_{i}\left(k_{1}\right)\left(\beta_{1}-\sigma_{l}\left(\beta_{1}\right)\right)+\cdots+\sigma_{i}\left(k_{r-1}\right)\left(\beta_{r}-\sigma_{i}\left(\beta_{r-1}\right)\right)=0 .
$$

which is not identically zero because $\beta_{1} \neq \sigma_{l}\left(\beta_{1}\right)$, but has fewer nonzero coefficients than our minimum number r, so we have reached a contradiction.

Therefore, we finally obtain $n=[K: F]$.
Corollary 1.3. Let K / F be any finite extension. Then, $|\operatorname{Aut}(K / F)| \leq[K: F]$ with equality if and only if F is the fixed field of $\operatorname{Aut}(K / F)$.
Proof. Let F_{1} be the fixed field of $\operatorname{Aut}(K / F)$. Then, $F \subset F_{1} \subset K$ and $[K: F] \geq\left[K: F_{1}\right]=\operatorname{Aut}(K / F)$ with equality if and only if $F=F_{1}$.

Corollary 1.4. A finite extension K / F is Galois if and only if F is the fixed field of $\operatorname{Aut}(K / F)$.

Corollary 1.5. Let $G \leq \operatorname{Aut}(K)$ be a finite subgroup of the automorphisms of K. Let F be the fixed field. Then, K / F is Galois with Galois group G.

Proof. By assumption, $G \leq|\operatorname{Aut}(K / F)|$, but $[K: F]=|G| \leq|\operatorname{Aut}(K / F)| \leq[K: F]$, so $G=\operatorname{Aut}(K / F)$.
Corollary 1.6. If $G_{1} \neq G_{2}$ are distinct finite subgroups of $\operatorname{Aut}(K)$ for a field K, then their fixed fields are distinct.

Proof. Suppose F_{1} and F_{2} are the fixed fields of G_{1} and G_{2}. If $F_{1}=F_{2}$, then G_{1} fixes F_{2}, so $G_{1} \subset G_{2}$. Similarly, $G_{1} \subset G_{1}$ so we conclude $G_{1}=G_{2}$.

This can actually characterize Galois extensions!
Definition 1.7. If K / F is Galois and $\alpha \in K$, the elements $\sigma(\alpha)$ for $\sigma \in \operatorname{Gal}(K / F)$ are called the Galois conjugates of α.

Theorem 1.8. An extension K / F is Galois if and only if K is the splitting field of some separable polynomial over F. Furthermore, if this is the case, then every irreducible polynomial with coefficients in F which has a root in K has all of its roots in K. In particular, K / F is separable.
Proof. We already know that a splitting field of a separable polynomial is Galois.
We'll first show that if K / F is Galois, then every irreducible polynomial $p(x) \in F[x]$ with a root in K splits completely in K. Let $G=\operatorname{Gal}(K / F)=\left\{1, \sigma_{2}, \ldots, \sigma_{n}\right\}$ and let α be a root of $p(x)$. Let $\left\{\alpha, \sigma_{2}(\alpha), \ldots, \sigma_{n}(\alpha)\right\}$ be the Galois conjugates of α. Let $\alpha, \alpha_{2}, \ldots, \alpha_{r}$ be the distinct Galois conjugates. For any $\tau \in G$, because $\tau G=G$, applying τ to the set $\alpha, \alpha_{2}, \ldots, \alpha_{r}$ just permutes these elements, so the polynomial

$$
f(x)=(x-\alpha)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{r}\right)
$$

has coefficients fixed by G because the elements of G just permute the factors. Therefore, $f(x)$ is in the fixed field of G, which is F by the previous corollary, so $f(x) \in F[x]$. Since $p(x)$ was the minimal polynomial of α, we know $f(x) \mid p(x)$, but we also know that $p(x)$ has each α_{i} as a root, so $p(x) \mid f(x)$, and therefore $p(x)=f(x)$. This shows that $p(x)$ is separable and splits completely in K.

Finally, suppose K / F is Galois and let $\beta_{1}, \ldots, \beta_{n}$ be a basis for K / F, and let $p_{i}(x)$ be the minimal polynomial of β_{i}. Each $p_{i}(x)$ is therefore separable with all of its roots in K. Let $g(x)$ be the polynomial obtained by removing any "repeated factors" from the product $p_{1}(x) \ldots p_{n}(x)$, which has the same splitting field as $p_{1}(x) \ldots p_{n}(x)$, but is separable. Because the splitting field of $p_{1}(x) \ldots p_{n}(x)$ is K, this shows that K is the splitting field of $g(x)$ which is separable.

The proof of this theorem tells us something very useful! Namely:
in a Galois extension K / F, for any $\alpha \in F$, the roots of the minimal polynomial of α are just the distinct Galois conjugates of α.

We can use this to find minimal polynomials! For example:
Example 1.9. Find the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}.
We know that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ which is a Galois extension of \mathbb{Q} with Galois group $\{1, \sigma, \tau, \sigma \tau\}$ where $\sigma(\sqrt{2})=-\sqrt{2}$ and $\tau(\sqrt{3})=-\tau 3$. To find the minimal polynomial, we just find the conjugates and multiply: the conjugates are

$$
\sqrt{2}+\sqrt{3}, \quad-\sqrt{2}+\sqrt{3}, \quad \sqrt{2}-\sqrt{3}, \quad-\sqrt{2}-\sqrt{3}
$$

so the minimal polynomial is

$$
(x-(\sqrt{2}+\sqrt{3}))(x-(-\sqrt{2}+\sqrt{3}))(x-(\sqrt{2}-\sqrt{3}))(x-(-\sqrt{2}-\sqrt{3}))=x^{4}-10 x^{2}+1 .
$$

Finally, let's prove the Fundamental Theorem.

Theorem 1.10. Let K / F be a Galois extension with $G=\operatorname{Gal}(K / F)$. There is a bijection
$\{$ subfields E such that $F \subset E \subset K\}$ and $\{$ subgroups H such that $G \geq H \geq 1\}$
given by the correspondences: $E \mapsto$ the elements of G fixing E and $H \mapsto$ the fixed field of H.
These are inverse to each other and:
(1) If E_{1}, E_{2} correspond to H_{1}, H_{2}, then $E_{1} \subset E_{2}$ if and only if $H_{2} \leq H_{1}$;
(2) $[K: E]=|H|$ and $[E: F]=|G: H|$;
(3) K / E is Galois with Galois group $\operatorname{Gal}(K / E)=H$;
(4) E is Galois over F if and only if H is a normal subgroup of G. In this case, $\operatorname{Gal}(E / F)=G / H$. Even if H is not normal, the isomorphisms of E which fix F are in one-to-one correspondence with the cosets $\{\sigma H\}$ of H in G;
(5) The lattices of subfields and subgroups are compatible with respect to this bijection.

Proof. Given any subgroup $H \leq G$, there is a unique fixed field $E=K^{H}$ by a previous Corollary. This says the correspondence right to left is injective. Now, if K is the splitting field of the separable polynomial $f(x) \in F[x]$, then $f(x) \in E[x]$ for any subfield $F \subset E \subset K$ so K is also the splitting field of $f(x)$ over E and hence K / E is Galois. Therefore, E is the fixed field of Aut $(K / E) \leq G$, so every subfield E is the fixed field of some subgroup of G and hence the correspondence is surjective. Therefore, we have proved the bijection. We have also already shown that the automorphisms fixing E are exactly $\operatorname{Aut}(K / E)$ so these correspondences are inverses.

Now, let's prove the sub-statements. We have already proved (1) and (3). For (2), if $E=K^{H}$ is the fixed field of $H \leq G$, then $[K: E]=|H|$ an $[K: F]=|G|$, which gives $[E: F]=|G: H|$.

For (4), suppose $E=K^{H}$ is the fixed field of the subgroup H. Then, every $\sigma \in G=\operatorname{Gal}(K / F)$ restricted to E gives an embedding $\left.\sigma\right|_{E}: E \rightarrow \sigma(E) \subset K$. Conversely, if $\tau: E \rightarrow \tau(E) \subset \bar{F}$ is any embedding of E into a fixed algebraic closure of F containing K that fixes F, then $\tau(E) \subset K$ because, if $\alpha \in E$ has minimal polynomial $m_{\alpha}(x), \tau(\alpha)$ is another root of $m_{\alpha}(x)$, and K contains all of these roots. In other words, as K is the splitting field of $f(x)$ over E, it is also the splitting field of $\tau f(x)$ over $\tau(E)$. Therefore, any isomorphism $\tau: E \rightarrow \tau(E)$ extends to an isomorphism $\sigma: K \rightarrow K$ which must fix F because τ does, and hence $\sigma \in \operatorname{Aut}(K / F)$. This shows that every such τ is the restriction to E of some $\sigma \in \operatorname{Aut}(K)$.

Now, suppose we have two automorphisms σ, σ^{\prime} of K. They restrict to the same embedding of E if and only if $\left.\sigma^{-1} \sigma^{\prime}\right|_{E}=i d$, which implies that $\sigma^{-1} \sigma^{\prime} \in H$, or $\sigma^{\prime} \in \sigma H$. This says that the embeddings of E / F are in bijection with the cosets σH of H in G, so $|E m b(E / F)|=[G: H]=[E: F]$. We therefore need to show that E / F is Galois if and only if $\operatorname{Aut}(E / F)=E m b(E / F)$, i.e. each embedding of E is actually an automorphism of $E: \sigma(E)=E$.

So, suppose $\sigma \in G$. First, we claim that the subgroup of G fixing the field $\sigma(E)$ is the group $\sigma H \sigma^{-1}$, i.e. $\sigma(E)=K^{\sigma H \sigma^{-1}}$. If $\sigma(\alpha) \in \sigma(E)$, then $\left(\sigma h \sigma^{-1}(\sigma(\alpha))=\sigma(\alpha)\right.$ for any $h \in H$ because h fixes $\alpha \in E$. Also, the group fixing $\sigma(E)$ must have order equal to $[K: \sigma(E)]=[K: E]=|H|$, but $\left|\sigma H \sigma^{-1}\right|=|H|$, so in fact the group fixing $\sigma(E)$ must equal $\sigma H \sigma^{-1}$.

Therefore, by the bijective correspondence, $\sigma(E)=E$ for all $\sigma \in G$ if and only if $\sigma H \sigma^{-1}=H$ for all $\sigma \in G$, i.e. H is normal.

We leave it as an exercise to verify that the Galois group is precisely G / H in this and to prove 5.

2. 14.3: Finite Fields

This section is mostly a recap of things we've seen about finite fields. So far, we know:
(1) A finite field has characteristic p for some prime p, and any such field is $\cong \mathbb{F}_{p^{n}}$ which is the splitting field of $x^{p^{n}}-x$ over \mathbb{F}_{p}.
(2) $\mathbb{F}_{p^{n}}$ is Galois over \mathbb{F}_{p} with cyclic Galois group $\left\langle\sigma_{p}\right\rangle \cong \mathbb{Z}_{n}$ where σ_{p} is the Frobenius.
(3) By the Fundamental Theorem, the subfields of $\mathbb{F}_{p^{n}}$ correspond to subgroups of \mathbb{Z}_{n}, of which there is exactly one for each divisor d of n : $\left\langle\sigma_{p}^{d}\right\rangle$. By the classification of finite fields, this must be $\mathbb{F}_{p^{d}}$.
Proposition 2.1. The polynomial $x^{p^{n}}-x$ is the product of all distinct irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree d as d ranges through the divisors of n.
Proof. If $p(x)$ is any irreducible polynomial of degree d with some root α, then $\mathbb{F}_{p}(\alpha) \subset \mathbb{F}_{p^{n}}$, so d must be a divisor of n and the extension must be $\mathbb{F}_{p^{d}}$. This implies also that the extension is Galois, so that all roots of $p(x)$ are contained in $\mathbb{F}_{p}(\alpha)$. Because $\mathbb{F}_{p^{n}}$ is just the set of roots of $x^{p^{n}}-x$, if we group the factors of this polynomial according to the degree of their minimal polynomials, we find that the polynomial $x^{p^{n}}-x$ is the claimed product.

Finally,
Proposition 2.2. The algebraic closure of \mathbb{F}_{p} is $\cup_{n \geq 1} \mathbb{F}_{p^{n}}$.
Proof. This union consists of all finite extensions of \mathbb{F}_{p}, so must be an algebraic closure. It is a field because there is a partial ordering: given any n_{1}, n_{2}, there is a larger field that contains both $\mathbb{F}_{p^{n_{1}}}$ and $\mathbb{F}_{p^{n_{2}}}$, namely $\mathbb{F}_{p^{n_{1} n_{2}}}$. So, for instance, given any α, β in this union, $\alpha \in \mathbb{F}_{p^{n_{1}}}$ for some n_{1} and $\beta \in \mathbb{F}_{p^{n_{2}}}$ for some n_{2}, so $\alpha, \beta \in \mathbb{F}_{p^{n_{1} n_{2}}}$, which is a field, so $\alpha \pm \beta, \alpha \beta, \alpha / \beta$ all exist in $b F_{p^{n_{1} n_{2}}}$ and hence exist in the union.

