
MARCH 5 NOTES

1. 14.2: The Fundamental Theorem of Galois Theory

Our goal is to prove the Fundamental Theorem of Galois Theory. Here’s where we left off:

Theorem 1.1. If σ1, . . . , σn are distinct embeddings of K into L, then they are linearly independent
over L.

Theorem 1.2. Let K be a field and G = {1 =: σ1, σ2, . . . , σn} be a subgroup of Aut(K). Let F be
the fixed field. Then, [K : F ] = n = |G|.

Proof. Suppose first the n > [K : F ]. Last time, we used linear algebra to get a contradiction.
Now, suppose n < [K : F ]. We do more linear algebra. This implies there are more than n basis

vectors for K over F ; let k1, . . . , kn+1 be n+ 1 of them. Then, the system

σ1(k1)x1 + σ1(k2)x2 + · · ·+ σ1(kn+1)xn+1 = 0

. . .

σn(k1)x1 + σn(k2)x2 + · · ·+ σn(kn+1)xn+1 = 0

has n equations in n+1 unknowns so has a nontrivial solution β1, . . . , βn+1. The elements βi cannot
all be elements of F : in the first equation, σ1 is the identity, and if each βi were in F , this would
give a nontrivial relation among the basis vectors {k1, . . . , kn+1}.

Now, among all nontrivial solutions β1, . . . , βn+1, choose the one with the minimal number r of
nonzero βi and renumber and divide by βr to assume we have a system of equations (⋆) (for each
1 ≤ i ≤ n):

σi(k1)β1 + · · ·+ σi(kr−1)βr−1 + σi(kr) = 0.

As at least one of the βi /∈ F , we may assume β1 /∈ F . However, since β1 /∈ F , it is not fixed
by at least one element σl, i.e. σl(β1) ̸= β1. Applying this automorphism to each of the previous
equations, we have

σlσi(k1)σl(β1) + · · ·+ σlσi(kr−1)σl(βr−1) + σlσi(kr) = 0.

But, because G is a group, the set {σlσi}ni=1 is equal to G, and therefore (letting σj be the element
σlσi, we have the system of equations (†) 1 ≤ j ≤ n

σj(k1)σl(β1) + · · ·+ σj(kr−1)σj(βr−1) + σj(kr) = 0.

Finally, subtracting the equations † from the equations ⋆, we have a system of equations

σi(k1)(β1 − σl(β1)) + · · ·+ σi(kr−1)(βr − σi(βr−1)) = 0.

which is not identically zero because β1 ̸= σl(β1), but has fewer nonzero coefficients than our
minimum number r, so we have reached a contradiction.

Therefore, we finally obtain n = [K : F ]. □

Corollary 1.3. Let K/F be any finite extension. Then, |Aut(K/F )| ≤ [K : F ] with equality if
and only if F is the fixed field of Aut(K/F ).

Proof. Let F1 be the fixed field of Aut(K/F ). Then, F ⊂ F1 ⊂ K and [K : F ] ≥ [K : F1] = Aut(K/F )
with equality if and only if F = F1. □

Corollary 1.4. A finite extension K/F is Galois if and only if F is the fixed field of Aut(K/F ).
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Corollary 1.5. Let G ≤ Aut(K) be a finite subgroup of the automorphisms of K. Let F be the
fixed field. Then, K/F is Galois with Galois group G.

Proof. By assumption, G ≤ |Aut(K/F )|, but [K : F ] = |G| ≤ |Aut(K/F )| ≤ [K : F ], so
G = Aut(K/F ). □

Corollary 1.6. If G1 ̸= G2 are distinct finite subgroups of Aut(K) for a field K, then their fixed
fields are distinct.

Proof. Suppose F1 and F2 are the fixed fields of G1 and G2. If F1 = F2, then G1 fixes F2, so
G1 ⊂ G2. Similarly, G1 ⊂ G1 so we conclude G1 = G2. □

This can actually characterize Galois extensions!

Definition 1.7. If K/F is Galois and α ∈ K, the elements σ(α) for σ ∈ Gal(K/F ) are called the
Galois conjugates of α.

Theorem 1.8. An extension K/F is Galois if and only if K is the splitting field of some sepa-
rable polynomial over F . Furthermore, if this is the case, then every irreducible polynomial with
coefficients in F which has a root in K has all of its roots in K. In particular, K/F is separable.

Proof. We already know that a splitting field of a separable polynomial is Galois.
We’ll first show that if K/F is Galois, then every irreducible polynomial p(x) ∈ F [x] with a root

in K splits completely in K. Let G = Gal(K/F ) = {1, σ2, . . . , σn} and let α be a root of p(x).
Let {α, σ2(α), . . . , σn(α)} be the Galois conjugates of α. Let α, α2, . . . , αr be the distinct Galois
conjugates. For any τ ∈ G, because τG = G, applying τ to the set α, α2, . . . , αr just permutes
these elements, so the polynomial

f(x) = (x− α)(x− α2) . . . (x− αr)

has coefficients fixed by G because the elements of G just permute the factors. Therefore, f(x) is
in the fixed field of G, which is F by the previous corollary, so f(x) ∈ F [x]. Since p(x) was the
minimal polynomial of α, we know f(x) | p(x), but we also know that p(x) has each αi as a root,
so p(x) | f(x), and therefore p(x) = f(x). This shows that p(x) is separable and splits completely
in K.

Finally, suppose K/F is Galois and let β1, . . . , βn be a basis for K/F , and let pi(x) be the
minimal polynomial of βi. Each pi(x) is therefore separable with all of its roots in K. Let g(x)
be the polynomial obtained by removing any “repeated factors” from the product p1(x) . . . pn(x),
which has the same splitting field as p1(x) . . . pn(x), but is separable. Because the splitting field of
p1(x) . . . pn(x) is K, this shows that K is the splitting field of g(x) which is separable. □

The proof of this theorem tells us something very useful! Namely:
in a Galois extension K/F , for any α ∈ F , the roots of the minimal polynomial of α are
just the distinct Galois conjugates of α.

We can use this to find minimal polynomials! For example:

Example 1.9. Find the minimal polynomial of
√
2 +

√
3 over Q.

We know that Q(
√
2 +

√
3) = Q(

√
2,
√
3) which is a Galois extension of Q with Galois group

{1, σ, τ, στ} where σ(
√
2) = −

√
2 and τ(

√
3) = −τ3. To find the minimal polynomial, we just find

the conjugates and multiply: the conjugates are
√
2 +

√
3, −

√
2 +

√
3,

√
2−

√
3, −

√
2−

√
3

so the minimal polynomial is

(x− (
√
2 +

√
3))(x− (−

√
2 +

√
3))(x− (

√
2−

√
3))(x− (−

√
2−

√
3)) = x4 − 10x2 + 1.

Finally, let’s prove the Fundamental Theorem.
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Theorem 1.10. Let K/F be a Galois extension with G = Gal(K/F ). There is a bijection

{ subfields E such that F ⊂ E ⊂ K } and { subgroups H such that G ≥ H ≥ 1 }
given by the correspondences: E 7→ the elements of G fixing E and H 7→ the fixed field of H.

These are inverse to each other and:

(1) If E1, E2 correspond to H1, H2, then E1 ⊂ E2 if and only if H2 ≤ H1;
(2) [K : E] = |H| and [E : F ] = |G : H|;
(3) K/E is Galois with Galois group Gal(K/E) = H;
(4) E is Galois over F if and only if H is a normal subgroup of G. In this case, Gal(E/F ) = G/H.

Even if H is not normal, the isomorphisms of E which fix F are in one-to-one correspon-
dence with the cosets {σH} of H in G;

(5) The lattices of subfields and subgroups are compatible with respect to this bijection.

Proof. Given any subgroup H ≤ G, there is a unique fixed field E = KH by a previous Corollary.
This says the correspondence right to left is injective. Now, ifK is the splitting field of the separable
polynomial f(x) ∈ F [x], then f(x) ∈ E[x] for any subfield F ⊂ E ⊂ K so K is also the splitting
field of f(x) over E and hence K/E is Galois. Therefore, E is the fixed field of Aut(K/E) ≤ G, so
every subfield E is the fixed field of some subgroup of G and hence the correspondence is surjective.
Therefore, we have proved the bijection. We have also already shown that the automorphisms fixing
E are exactly Aut(K/E) so these correspondences are inverses.

Now, let’s prove the sub-statements. We have already proved (1) and (3). For (2), if E = KH is
the fixed field of H ≤ G, then [K : E] = |H| an [K : F ] = |G|, which gives [E : F ] = |G : H|.

For (4), suppose E = KH is the fixed field of the subgroup H. Then, every σ ∈ G = Gal(K/F )
restricted to E gives an embedding σ|E : E → σ(E) ⊂ K. Conversely, if τ : E → τ(E) ⊂ F is
any embedding of E into a fixed algebraic closure of F containing K that fixes F , then τ(E) ⊂ K
because, if α ∈ E has minimal polynomial mα(x), τ(α) is another root of mα(x), and K contains
all of these roots. In other words, as K is the splitting field of f(x) over E, it is also the splitting
field of τf(x) over τ(E). Therefore, any isomorphism τ : E → τ(E) extends to an isomorphism
σ : K → K which must fix F because τ does, and hence σ ∈ Aut(K/F ). This shows that every
such τ is the restriction to E of some σ ∈ Aut(K).

Now, suppose we have two automorphisms σ, σ′ ofK. They restrict to the same embedding of E if
and only if σ−1σ′|E = id, which implies that σ−1σ′ ∈ H, or σ′ ∈ σH. This says that the embeddings
of E/F are in bijection with the cosets σH of H in G, so |Emb(E/F )| = [G : H] = [E : F ]. We
therefore need to show that E/F is Galois if and only if Aut(E/F ) = Emb(E/F ), i.e. each
embedding of E is actually an automorphism of E: σ(E) = E.

So, suppose σ ∈ G. First, we claim that the subgroup of G fixing the field σ(E) is the group

σHσ−1, i.e. σ(E) = KσHσ−1
. If σ(α) ∈ σ(E), then (σhσ−1(σ(α)) = σ(α) for any h ∈ H because h

fixes α ∈ E. Also, the group fixing σ(E) must have order equal to [K : σ(E)] = [K : E] = |H|, but
|σHσ−1| = |H|, so in fact the group fixing σ(E) must equal σHσ−1.

Therefore, by the bijective correspondence, σ(E) = E for all σ ∈ G if and only if σHσ−1 = H
for all σ ∈ G, i.e. H is normal.

We leave it as an exercise to verify that the Galois group is precisely G/H in this and to prove
5. □

2. 14.3: Finite Fields

This section is mostly a recap of things we’ve seen about finite fields. So far, we know:

(1) A finite field has characteristic p for some prime p, and any such field is ∼= Fpn which is the
splitting field of xp

n − x over Fp.
(2) Fpn is Galois over Fp with cyclic Galois group ⟨σp⟩ ∼= Zn where σp is the Frobenius.
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(3) By the Fundamental Theorem, the subfields of Fpn correspond to subgroups of Zn, of which

there is exactly one for each divisor d of n: ⟨σd
p⟩. By the classification of finite fields, this

must be Fpd .

Proposition 2.1. The polynomial xp
n − x is the product of all distinct irreducible polynomials in

Fp[x] of degree d as d ranges through the divisors of n.

Proof. If p(x) is any irreducible polynomial of degree d with some root α, then Fp(α) ⊂ Fpn , so d
must be a divisor of n and the extension must be Fpd . This implies also that the extension is Galois,

so that all roots of p(x) are contained in Fp(α). Because Fpn is just the set of roots of xp
n − x, if

we group the factors of this polynomial according to the degree of their minimal polynomials, we
find that the polynomial xp

n − x is the claimed product. □

Finally,

Proposition 2.2. The algebraic closure of Fp is ∪n≥1Fpn.

Proof. This union consists of all finite extensions of Fp, so must be an algebraic closure. It is a field
because there is a partial ordering: given any n1, n2, there is a larger field that contains both Fpn1

and Fpn2 , namely Fpn1n2 . So, for instance, given any α, β in this union, α ∈ Fpn1 for some n1 and
β ∈ Fpn2 for some n2, so α, β ∈ Fpn1n2 , which is a field, so α± β, αβ, α/β all exist in bFpn1n2 and
hence exist in the union. □
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