
FEBRUARY 29 NOTES

1. 14.1: Introduction to Galois Theory

Some reminders from last time:

Proposition 1.1. Let E be the splitting field over F of the polynomial f(x) ∈ F [x]. Then,

|Aut(E/F )| ≤ [E : F ]

with equality if f(x) is separable.

Definition 1.2. Let K/F be a finite extension. Then, K is a Galois extension of F or Galois
over F if |Aut(K/F )| = [K : F ].

If K/F is Galois, the group Aut(K/F ) is called the Galois group of K/F and denoted by
Gal(K/F ).

Corollary 1.3. If K is the splitting field over F of a separable polynomial f(x), then K/F is
Galois.

In this case, we say the Galois group of f(x) is Gal(K/F ).

Example 1.4. Every quadratic extension K of F (for characteristic different than 2) is given by

K = F (
√
D) and is Galois. If

√
D /∈ F , then [K : F ] = 2 and Aut(K/F ) has two elements: 1 and

the automorphism sending
√
D → −

√
D. If

√
D ∈ F , then [K : F ] = 1 and therefore Aut(K/F ) is

trivial but again this extension is Galois.

Example 1.5. Q( 4
√
2) is not Galois over Q: there are four roots, ± 4

√
2 and ±i 4

√
2 but the only

allowed automorphism is sending 4
√
2 to ± 4

√
2.

Example 1.6. The extension of finite fields Fpn/Fp is Galois because it is the splitting field of the
separable polynomial xp

n − x. In this case, the Galois group is cyclic of order n, with σp(α) := αp

(the Frobenius) as the generator. This is an automorphism and any power of it is an automorphism,
and σn

p (α) = αpn = α, so σn
p is the identity. Also, no lower power of σp can be the identity, because

that would imply that αpi = α for all α ∈ Fpn , but the polynomial xp
i −x has only pi and therefore

cannot have all α ∈ Fpn as a root.

So far, we have taken a field extension K/F and associated a group Aut(K/F ) (or, Gal(K/F ) if
it is Galois) to it. This process is ‘reversible’:

Proposition 1.7. Let K be a field and H ⊂ Aut(K) a subgroup. Then, the collection F of elements
of K fixed by all elements of H is a subfield of K. It is called the fixed field of H.

Proof. Let h ∈ H and a, b ∈ F . Then, h(a) = a and h(b) = b, so h(a ± b) = h(a) ± h(b) = a ± b,
and h(ab) = h(a)h(b) = ab, and h(a−1) = (h(a))−1 = a−1. Therefore, F is closed under the field
operations and hence a subfield of K. □

Proposition 1.8. The association of groups to fields and fields to groups above is inclusion
reversing:

(1) if F1 ⊂ F2 ⊂ K, then Aut(K/F2) ⊂ Aut(K/F1).
(2) If H1 ⊂ H2 ⊂ Aut(K), then the fixed fields F1 and F2 satisfy F2 ⊂ F1.

In the previous examples, if H = Aut(K), for K = Q(
√
2), we have the fixed field of H is Q. If

K = Q( 3
√
2), we have the fixed field is Q( 3

√
2).
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Example 1.9. The extension K = Q(
√
2,
√
3) has Galois group the Klein-4 group given by the

four elements √
2 →

√
2,
√
3 →

√
3√

2 → −
√
2,
√
3 →

√
3√

2 →
√
2,
√
3 → −

√
3√

2 → −
√
2,
√
3 → −

√
3.

We label these as 1, σ, τ , and στ .
Furthermore: for each subgroup of Gal(K/F ), we can write down the fixed field: the fixed field of

{1} is K, the fixed field of {1, σ} is Q(
√
3; the fixed field of {1, τ} is Q(

√
2; the fixed field of {1, στ}

is Q(
√
6), and the fixed field of the whole group is Q. This suggests a correspondence between all

subfields of K and the fixed fields of Gal(K/F ).....

This is the Fundamental Theorem of Galois Theory, which is the content of the next section.

2. 14.2: The Fundamental Theorem of Galois Theory

Theorem 2.1. Let K/F be a Galois extension with G = Gal(K/F ). There is a bijection

{ subfields E such that F ⊂ E ⊂ K } and { subgroups H such that G ≥ H ≥ 1 }
given by the correspondences: E 7→ the elements of G fixing E and H 7→ the fixed field of H.

These are inverse to each other and:

(1) If E1, E2 correspond to H1, H2, then E1 ⊂ E2 if and only if H2 ≤ H1;
(2) [K : E] = |H| and [E : F ] = |G : H|;
(3) K/E is Galois with Galois group Gal(K/E) = H;
(4) E is Galois over F if and only if H is a normal subgroup of G. In this case, Gal(E/F ) = G/H.

Even if H is not normal, the isomorphisms of E which fix F are in one-to-one correspon-
dence with the cosets {σH} of H in G;

(5) The lattices of subfields and subgroups are compatible with respect to this bijection.

Our goal over the next two lectures will be to prove this theorem. We need to develop some
other terminology first.

Definition 2.2. If σ : K → L is an injective homomorphism of fields, it is called an embedding
of K into L. Note that the injectivity implies that σ is also a group homomorphism K× → L×.

These are examples of characters, which are group homomorphisms from χ : G → L× for some
group G and some field L.

Definition 2.3. If σ1, . . . , σn are embeddings of a field K into L (or characters), we say they
are linearly independent over L if whenever a1σ1 + · · · + anσn = 0 (where this is equality as
functions) for a1, . . . , an ∈ L, we have a1, . . . , an = 0.

Theorem 2.4. If σ1, . . . , σn are distinct embeddings of K into L (or, more generally, characters),
then they are linearly independent over L.

Proof. Suppose there is a nontrivial relation a1σ1 + · · · + anσn = 0. Choose a relation with the
minimum number m of nonzero coefficients, relabeling ai so we have a1σ1 + · · ·+ amσm = 0.

Since σ1 ̸= σm, we may choose some element k ∈ K×, k ̸= 0, such that σ1(k) ̸= σm(k). Then,
for any x ∈ K, we know

a1σ1(x) + · · ·+ amσm(x) = 0

and
a1σ1(kx) + · · ·+ amσm(kx) = 0

which implies
a1σ1(k)σ1(x) + · · ·+ amσm(k)σm(x) = 0.
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Multiplying the first equation by σm(k) and subtracting it from the second, we get

a1(σ1(k)− σm(k))σ1(x) + · · ·+ am−1(σm−1(k)− σm(k))σm−1(x) = 0

which is a relation with fewer nonzero coefficients, contradicting the minimality of m. □

Let’s start proving some things that will lead us to the Fundamental Theorem.

Theorem 2.5. Let K be a field and G = {1 =: σ1, σ2, . . . , σn} be a subgroup of Aut(K). Let F be
the fixed field. Then, [K : F ] = n = |G|.

Proof. Suppose first the n > [K : F ]. Let k1, . . . , km be a basis for K over F and consider the
homogenous linear system

σ1(k1)x1 + σ2(k1)x2 + · · ·+ σn(k1)xn = 0

σ1(k2)x1 + σ2(k2)x2 + · · ·+ σn(k2)xn = 0

. . .

σ1(km)x1 + σ2(km)x2 + · · ·+ σn(km)xn = 0.

This has m equations and n unknowns with m < n so must have a nontrivial solution β1, . . . , βn
in K. If a1, . . . , am are any m elements of F (remembering that σi(aj) = aj for all i, j), we may
multiply the jth equation above by aj , and then write each ajσi(kj) = σi(ajkj) to get

σ1(a1k1)β1 + σ2(a1k1)β2 + · · ·+ σn(a1k1)βn = 0

. . .

σ1(amkm)β1 + σ2(amkm)β2 + · · ·+ σn(amkm)βn = 0.

Adding these and using that σi is a homomorphism implies that, for any choice a1, . . . , am, we have

σ1(a1k1 + · · ·+ amkm)β1 + σ2(a1k1 + · · ·+ amkm)β2 + · · ·+ σn(a1k1 + · · ·+ amkm)βn = 0.

Since every element α ∈ K can be written in this form, we have

β1σ1 + · · ·+ βnσn = 0

which contradicts the previous theorem that distinct embeddings are linearly independent.
Next time, we will show n < [K : F ]. We do more linear algebra to prove it! □
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