FEBRUARY 27 NOTES

1. 14.1: INTRODUCTION TO GALOIS THEORY

Definition 1.1. Let K be a field. An automorphism of K is an isomorphism ¢ : K — K. The
collection of all automorphisms of K is denoted by Aut(K). If o € K is an element, Dummit and
Foote write oo to denote o ().

The identity map ¢d : K — K is always an automorphsim called the trivial automorphism and
often denoted 1 € Aut(K).

If o € Aut(K) is an automorphism, it is said to fix an element o € K if o(a) = a. If F is a
subset of K, we say o fixes F if o(a) = « for all « € F'.

Definition 1.2. If K/F is a field extension, Aut(K/F) is the set of automorphisms of K fixing F'.

Recall that the prime subfield of K is the field generated by 11K and is either Q or F,, depending
on the characteristic of K. Any automorphism o satisfies 0(1) = 1 so o(n) = n for all n € (1).
This implies that o fixes the prime subfield F' of K, so any automorphism of K is also an element
of Aut(K/F), i.e. Aut(K) = Aut(K/F) where F is the prime subfield of K.

Taking K to be either Q or [F,, this implies that Aut(K) = {1}.

In general, we have the following:

Proposition 1.3. Aut(K) is a group under composition and Aut(K/F) is a subgroup.
Proof. Exercise. U

Proposition 1.4. Let K/F be a field extension and o € K algebraic over F. Then, for any
o€ Aut(K/F), o(a) is a root of mq p. In other words, Aut(K/F) permutes the roots of irreducible
polynomials and any polynomial with coefficients in F having « as a root also has o(a) as a root.

Proof. Suppose mq p(x) = 2™ + 12" 1+ -+ a1z + ag. Then,
A" +ap1a" M+ aga+ag=0
and applying o, because o fixes F', we have o(a;) = a;, so this says
(0(@)" + an-1(a())" ' +---+aro(a) + ag = 0
so o(a) is also a root of mq p(x). O
Example 1.5. Let K = Q(v/2). Then, for any 7 € Aut(Q(v2) = Aut(Q(v/2)/Q), we know
7(v/2) = £v/2 by the previous proposition. Since 7 must fix Q, this determines 7 completely:

7(a+bv2) = a £ bv/2.

Therefore, there are only two possible automorphisms: the identity map, or the map o sending

V2 to —v/2. Therefore, Aut(Q(v/2)) = {1,0} = Zs.

Example 1.6. Let K = Q(+/2). Then, for any 7 € Aut(Q(v2) = Aut(Q(v/2)/Q), we know
7(%/2) must be another root of the minimal polynomial 2® — 2. However, the other roots are
complex numbers, and hence not in K. Therefore, we must have T(\“’/ﬁ) = /2 and therefore

Aut(Q(v2)) = {1}.

Example 1.7. What is Aut(K/F) for K = Q(v/2,v3) and F = Q? We know [K : F] = 4 because
K is the splitting field of (22 — 2)(2? — 3). We also can write down four automorphisms of K fixing
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F (we know these have to permute roots of each individual irreducible polynomial, so we have V2
going to +4/2, and /3 goint to +/3):

V25 v2,vV/3 V3

V2= —V2,V/3 53
V2= V2,V3— -3
V2= —V2,V/3 - V3

Claim: these are all of the automorphisms. We will verify this with a theorem momentarily.
If we label these as 1,0, 7, and o7, it is straightforward to compute that Aut(K/F) is the Klein-4
group. Try it as an exercise!

Galois theory stems from connecting the study of field extensions to the study of their automor-
phism groups. We will want to generalize the behavior in the first example, not the second.

Proposition 1.8. Let E be the splitting field over F of the polynomial f(x) € F[x]. Then,
|Aut(E/F)| < [E : F]
with equality if f(x) is separable.

Proof. We prove a more general statement: suppose ¢ : F' — F’ is an isomorphism. We know by
previous results that this can be extends to an isomorphism o : E — E’, where E’ is the splitting
field of f' = ¢(f) € F'[x]. We will show that the number of possible ¢’s is at most [E : F] with
equality if and only if f(z) is separable by induction on [E : F|. If [E : F| = 1, then there is only
one choice FF = E = E' = F’ and hence ¢ = 0. Now, suppose [E : F] > 1 and that p(z) is an
irreducible factor of f(z) of degree > 1. Let p’ = ¢(p). Let a be a root of p(x). Then, if o is
any extension of ¢ to F, then o restricted to F'(«) is an isomorphism 7 from F'(«) to a subfield of
E’. This is determined by 7(«), which must be a root of 8 of p'(x), so we have an isomoprhism
F(a) 2 F'(B). Conversely, if 8 is any root, the isomorphisms 7, o exists. Therefore, the number of
extensions of ¢ to 7 : F(a) — F'() is the number of distinct roots 8 of p/(z) which is equal to the
number of distinct roots « of p(z), and hence the number of possible 7’s is at most [F'(«) : F| with
equality if the roots are distinct.

Now, since E is the splitting field of f(x) over F(a) and [E : F(a)] < [E : F]. the inductive
hypothesis implies that the number of extensions of 7 to ¢ is at most [E : F(«)] with equality if
f(z) has distinct roots.

Therefore, the number of possible o’s is at most [E : F(«)|[F(«) : F] = [E : F| with equality if
f(x) is separable. O

Definition 1.9. Let K/F be a finite extension. Then, K is a Galois extension of F' or Galois
over Fif |Aut(K/F)| = [K : F).

If K/F is Galois, the group Aut(K/F) is called the Galois group of K/F and denoted by
Gal(K/F).

Corollary 1.10. If K is the splitting field over F' of a separable polynomial f(x), then K/F is
Galois.
In this case, we say the Galois group of f(x) is Gal(K/F).

Example 1.11. Aut(Q(v/2)/Q) = {1,0} which has the same size as [Q(v/2) : Q] and hence is a
Galois extension, and the Galois group is Zs.

Because |[Aut(Q(+/2)/Q)| = 1, this extension is not Galois.

Because Aut(Q(v/2,v/3)/Q) is the Klein-4 group and the extension has degree 4, this extension
is Galois over F' = Q.
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Example 1.12. Every quadratic extension K of F' (for characteristic different than 2) is given by
K = F(v/D) and is Galois. If VD ¢ F, then [K : F] = 2 and Aut(K/F) has two elements: 1 and
the automorphism sending vD — —v/D. If VD € F, then [K : F] = 1 and therefore Aut(K/F) is
trivial but again this extension is Galois.
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