
FEBRUARY 27 NOTES

1. 14.1: Introduction to Galois Theory

Definition 1.1. Let K be a field. An automorphism of K is an isomorphism σ : K → K. The
collection of all automorphisms of K is denoted by Aut(K). If α ∈ K is an element, Dummit and
Foote write σα to denote σ(α).

The identity map id : K → K is always an automorphsim called the trivial automorphism and
often denoted 1 ∈ Aut(K).

If σ ∈ Aut(K) is an automorphism, it is said to fix an element α ∈ K if σ(α) = α. If F is a
subset of K, we say σ fixes F if σ(α) = α for all α ∈ F .

Definition 1.2. If K/F is a field extension, Aut(K/F ) is the set of automorphisms of K fixing F .

Recall that the prime subfield of K is the field generated by 1ıK and is either Q or Fp depending
on the characteristic of K. Any automorphism σ satisfies σ(1) = 1 so σ(n) = n for all n ∈ ⟨1⟩.
This implies that σ fixes the prime subfield F of K, so any automorphism of K is also an element
of Aut(K/F ), i.e. Aut(K) = Aut(K/F ) where F is the prime subfield of K.

Taking K to be either Q or Fp, this implies that Aut(K) = {1}.
In general, we have the following:

Proposition 1.3. Aut(K) is a group under composition and Aut(K/F ) is a subgroup.

Proof. Exercise. □

Proposition 1.4. Let K/F be a field extension and α ∈ K algebraic over F . Then, for any
σ ∈ Aut(K/F ), σ(α) is a root of mα,F . In other words, Aut(K/F ) permutes the roots of irreducible
polynomials and any polynomial with coefficients in F having α as a root also has σ(α) as a root.

Proof. Suppose mα,F (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0. Then,

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

and applying σ, because σ fixes F , we have σ(ai) = ai, so this says

(σ(α))n + an−1(σ(α))
n−1 + · · ·+ a1σ(α) + a0 = 0

so σ(α) is also a root of mα,F (x). □

Example 1.5. Let K = Q(
√
2). Then, for any τ ∈ Aut(Q(

√
2) = Aut(Q(

√
2)/Q), we know

τ(
√
2) = ±

√
2 by the previous proposition. Since τ must fix Q, this determines τ completely:

τ(a+ b
√
2) = a± b

√
2.

Therefore, there are only two possible automorphisms: the identity map, or the map σ sending√
2 to −

√
2. Therefore, Aut(Q(

√
2)) = {1, σ} ∼= Z2.

Example 1.6. Let K = Q( 3
√
2). Then, for any τ ∈ Aut(Q(

√
2) = Aut(Q(

√
2)/Q), we know

τ( 3
√
2) must be another root of the minimal polynomial x3 − 2. However, the other roots are

complex numbers, and hence not in K. Therefore, we must have τ( 3
√
2) = 3

√
2 and therefore

Aut(Q( 3
√
2)) = {1}.

Example 1.7. What is Aut(K/F ) for K = Q(
√
2,
√
3) and F = Q? We know [K : F ] = 4 because

K is the splitting field of (x2− 2)(x2− 3). We also can write down four automorphisms of K fixing
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F (we know these have to permute roots of each individual irreducible polynomial, so we have
√
2

going to ±
√
2, and

√
3 goint to ±

√
3):

√
2 →

√
2,
√
3 →

√
3

√
2 → −

√
2,
√
3 →

√
3

√
2 →

√
2,
√
3 → −

√
3

√
2 → −

√
2,
√
3 → −

√
3

Claim: these are all of the automorphisms. We will verify this with a theorem momentarily.
If we label these as 1, σ, τ , and στ , it is straightforward to compute that Aut(K/F ) is the Klein-4

group. Try it as an exercise!

Galois theory stems from connecting the study of field extensions to the study of their automor-
phism groups. We will want to generalize the behavior in the first example, not the second.

Proposition 1.8. Let E be the splitting field over F of the polynomial f(x) ∈ F [x]. Then,

|Aut(E/F )| ≤ [E : F ]

with equality if f(x) is separable.

Proof. We prove a more general statement: suppose ϕ : F → F ′ is an isomorphism. We know by
previous results that this can be extends to an isomorphism σ : E → E′, where E′ is the splitting
field of f ′ = ϕ(f) ∈ F ′[x]. We will show that the number of possible σ’s is at most [E : F ] with
equality if and only if f(x) is separable by induction on [E : F ]. If [E : F ] = 1, then there is only
one choice F = E ∼= E′ = F ′ and hence ϕ = σ. Now, suppose [E : F ] > 1 and that p(x) is an
irreducible factor of f(x) of degree > 1. Let p′ = ϕ(p). Let α be a root of p(x). Then, if σ is
any extension of ϕ to E, then σ restricted to F (α) is an isomorphism τ from F (α) to a subfield of
E′. This is determined by τ(α), which must be a root of β of p′(x), so we have an isomoprhism
F (α) ∼= F ′(β). Conversely, if β is any root, the isomorphisms τ, σ exists. Therefore, the number of
extensions of ϕ to τ : F (α) → F ′(β) is the number of distinct roots β of p′(x) which is equal to the
number of distinct roots α of p(x), and hence the number of possible τ ’s is at most [F (α) : F ] with
equality if the roots are distinct.

Now, since E is the splitting field of f(x) over F (α) and [E : F (α)] < [E : F ]. the inductive
hypothesis implies that the number of extensions of τ to σ is at most [E : F (α)] with equality if
f(x) has distinct roots.

Therefore, the number of possible σ’s is at most [E : F (α)][F (α) : F ] = [E : F ] with equality if
f(x) is separable. □

Definition 1.9. Let K/F be a finite extension. Then, K is a Galois extension of F or Galois
over F if |Aut(K/F )| = [K : F ].

If K/F is Galois, the group Aut(K/F ) is called the Galois group of K/F and denoted by
Gal(K/F ).

Corollary 1.10. If K is the splitting field over F of a separable polynomial f(x), then K/F is
Galois.

In this case, we say the Galois group of f(x) is Gal(K/F ).

Example 1.11. Aut(Q(
√
2)/Q) = {1, σ} which has the same size as [Q(

√
2) : Q] and hence is a

Galois extension, and the Galois group is Z2.
Because |Aut(Q( 3

√
2)/Q)| = 1, this extension is not Galois.

Because Aut(Q(
√
2,
√
3)/Q) is the Klein-4 group and the extension has degree 4, this extension

is Galois over F = Q.
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Example 1.12. Every quadratic extension K of F (for characteristic different than 2) is given by

K = F (
√
D) and is Galois. If

√
D /∈ F , then [K : F ] = 2 and Aut(K/F ) has two elements: 1 and

the automorphism sending
√
D → −

√
D. If

√
D ∈ F , then [K : F ] = 1 and therefore Aut(K/F ) is

trivial but again this extension is Galois.
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