
FEBRUARY 20 NOTES

1. 13.5: Separable and Inseparable Extensions

Definition 1.1. A polynomial F is called separable if it has no multiple roots. It is called
inseparable if it has multiple roots.

Last time we ended with:

Theorem 1.2. Every irreducible polynomial over a field of characteristic 0 is separable. Even in
characteristic p, if Dxp(x) is non-zero, the same proof applies to show irreducible polynomials are
separable. In particular, the only way to find inseparable irreducible polynomials is to have those
whose derivative is identically 0.

Let’s discuss polynomials in characteristic p.

Proposition 1.3. Let F be a field of characteristic p. Then, for any a, b ∈ F ,

(a+ b)p = ap + bp and (ab)p = apbp.

Proof. The equation (ab)p = apbp holds in any field by commutativity. We must only verify the
first, which we do using the Binomial Theorem:

(a+ b)p =

p∑
i=0

(
p

i

)
ap−ibi

where (
p

i

)
=

p!

i!(p− i)!

are integers. Because p! is divisible by p and for 0 < i < p, no term in the denominator is a multiple
of p, the integer

(
p
i

)
is a multiple of p. Therefore, every term other than i = 0 or i = p is zero over

a field of characteristic p¡ so we have

(a+ b)p = ap + bp.

□

Remark 1.4. Let F be a field of characteristic p. By the previous proposition, the function
ϕ : F → F given by ϕ(a) = ap is an injective endomorphism. This is a very important function
called the Frobenius map.

Corollary 1.5. If F is a finite field of characteristic p, then every element of F is a pth power.

Proof. Because the Frobenius map F → F sending a to ap is injective and F is finite, it is also
surjective. □

What does this tell us? Suppose p(x) ∈ F [x] is an inseparable irreducible polynomial over a
field F of characteristic p. To be inseparable, the derivative must be identically 0, i.e. Dxp(x) = 0,
which is possible if and only if each exponent in the polynomial p(x) is a multiple of p. In other
words,

p(x) = amxmp + am−1x
(m−1)p + · · ·+ a1x

p + a0

so p(x) = q(xp) for the polynomial q(x) given by

q(x) = amxm + am−1x
(m−1) + · · ·+ a1x+ a0.
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If F is a finite field, by the previous corollary, each element ai ∈ F is also a pth power, so we
could write each coefficient ai as b

p
i for some bi ∈ F . Therefore,

p(x) = bpmxmp + bpm−1x
(m−1)p + · · ·+ bp1x

p + bp0

= (bmxm)p + · · ·+ (b1x)
p + bp0

= (bmxm + · · ·+ b1x+ b0)
p

so p(x) is the pth power of another polynomial, which is impossible if p(x) is irreducible. Therefore,
we have just shown the following:

Proposition 1.6. Every irreducible polynomial over a finite field F is separable.

Definition 1.7. A field K is called perfect if char(K) = 0 or char(K) = p and every element
k ∈ K is a pth power.

With this definition in hand, we’ve actually shown:

Proposition 1.8. Every irreducible polynomial over a perfect field is separable.

Going back to the inseparable polynomial, we showed that if p(x) is inseparable, then p(x) = p1(x
p)

for some polynomial p1(x). If p1(x) is inseparable, then p1(x) = p2(x
p) for some p2(x) (and

hence p(x) = p2(x
p2)), and so on. This must eventually end with a separable polynomial pk(x)

whose derivative is not identically zero because polynomials have finite degree. Therefore, for any
inseparable polynomial, we have the following:

Proposition 1.9. Let p(x) be an irreducible polynomial over a field F of characteristic p. There

is a unique integer k ≥ 0 such that p(x) = psep(x
pk) where psep(x) ∈ F [x] is a separable irreducible

polynomial. The integer pk is called the inseparable degree of p(x), denoted degi p(x), and the
degree of the separable polynomial psep(x) is called the separable degree of p(x), denoted degs p(x).
These satisfy the relationship

deg p(x) = degi p(x) degs p(x).

Example 1.10. The polynomial p(x) = x2 − t over F2(t) has psep(x) = x − t, so has separable
degree 1 and inseparable degree 2.

Definition 1.11. A field K is separable over R if every element of K is the root of a separable
polynomial over F .

We will discuss separable extensions more in the future!
We end with some commentary on finite fields.
Let n > 0 be any positive integer and consider the splitting field of the polynomial xp

n − x over
Fp. This polynomial is separable, so has pn distinct roots. Note first that every element of Fp

is a root of this polynomial: by Fermat’s Little Theorem, for every a ∈ Fp, a
p ≡ a (mod p), so

ap
n − a = 0 in Fp.
Also, α and β are any two roots, then αpn = α and βpn = β. We also have: (αβ)p

n
= αβ;

(α−1)p
n
= α−1; and (α + β)p

n
= α + β. Therefore, the pn roots of xp

n − x form a field, which is
subfield of the splitting field that contains Fp. The splitting field was defined to be the smallest
subfield containing all of the roots, so this implies that the splitting field is exactly equal to the set
of pn roots of this polynomial. Therefore, for any n > 0, we have just constructed a finite field F
of order pn such that [F : Fp] = n. In other words, for any n > 0, there exist finite extensions of
Fp of degree n. We denote this field by Fpn .

Perhaps miraculously, these are all of the possible finite fields. Let F be any finite field of
characteristic p, which by definition contains its prime subfield Fp. If F has degree n over Fp, then
|F | = pn. Because F is a field, F× is a group of order pn−1, so, by Lagrange’s Theorem, αpn−1 = 1
for every α ∈ F×. In other words, every α ∈ F is a root of the polynomial xp

n − x over Fp, so F
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is contained in a splitting field for this polynomial. But, |F | = pn and the splitting field has pn

elements, so in fact F must be equal to the splitting field for this polynomial.
In summary: any finite field has order pn for some prime number p and integer n, and up to

isomorphism, the only finite fields are Fp and Fpn , the splitting field of the polynomial xp
n −x over

Fp.

2. 13.6: Cyclotomic Polynomials and Extensions

For the remainder of today’s class, we will revisit the cyclotomic fields Q(ζn), where ζn is a
primitive nth root of unity satisfying the equation xn − 1 = 0.

Definition 2.1. For n ≥ 1, the group of nth roots of unity is denoted µn = {1, ζn, ζ2n, . . . , ζn−1
n }.

We’ve already seen that µn
∼= Zn.

Note that, if d | n, then for any ζ ∈ µd, 1 = ζd so ζn = (ζd)n/d) = 1, so ζ ∈ µn. In other words,
µd ⊂ µn. Conversely, if ζ ∈ µn and ζd = 1 is the smallest power of ζ satisfying ζd = 1, then because
ord(ζ) | n, we must have d | n.

Definition 2.2. The nth cyclotomic polynomial Φn(x) is the polynomial whose roots are the
primitive nth roots of unity:

Φn(x) = Πζ∈µn primitive(x− ζ) = Π1≤a<n,gcd(a,n)=1(x− ζan).

Note degΦn = ϕ(n).

By definition, we know
xn − 1 = Πζ∈µn(x− ζ)

and we could group the roots by order. Using that ord(ζ) = d if and only if d | n and ζ is a
primitive dth roots of unity, we can write the polynomial as:

xn − 1 = Πd|nΠζ∈µd primitive(x− ζ) = Πd|nΦd(x).

This allows us to compute Φn(x) recursively! For example, by definition, Φ1(x) = x − 1 and
Φ2(x) = x+ 1. Then, we compute higher n:

x3 − 1 = Φ1(x)Φ3(x) = (x− 1)Φ3(x)

so we can solve and find Φ3(x) = x2 + x+ 1.

x4 − 1 = Φ1(x)Φ2(x)Φ4(x) = (x− 1)(x+ 1)Φ4(x)

so we can solve and find Φ4(x) = x2 + 1.
In general, for p prime, we have xp − 1 = Φ1(x)Φp(x) = (x− 1)Φp(x) which yields

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1.

The behavior of Φn(x) is always similar to this:

Lemma 2.3. The polynomial Φn(x) is a monic irreducible polynomial in Z[x] of degree ϕ(n), and
hence the minimal polynomial of ζn for any primitive nth root of unity.

Proof. It is clear from the definition that Φn(x) is monic and of degree ϕ(n). Now, we verify that
Φn(x) ∈ Z[x] by induction: the base case n = 1 is clear, so assume n > 1 and Φd(x) ∈ Z[x] for all
d < n. By definition, xn − 1 = f(x)Φn(x) where f(x) = Πd|n,d≤nΦdx. By the division algorithm,
because f(x) and xn−1 ∈ Q[x], we have Φn(x) ∈ Q[x]. If Φn(x) were not in Z[x], we could multiply
both sides of

xn − 1 = f(x)Φn(x)

by the least common multiple m of the denominators of coefficients in Φn(x). Let Φ
′(x) = mΦn(x).

By construction, for any prime p | m, we have Φ′(x) ̸= 0 (mod p) (we multiplied by the least
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common multiple of the denominators, so if ai was the coefficient of Φn in which the highest power
of p appeared in the denominator, mai would not be divisible by p). This gives

m(xn − 1) = f(x)Φ′(x)

but, for any p | m, this says f(x)Φ′(x) = 0 ∈ Zp[x], and as Φ′(x) ̸= 0, this implies f(x) = 0. In
other words, f(x) is divisible by p for every prime p dividing m. However, f(x) is monic, so cannot
be divisible by any constant other than 1, which gives a contradiction. Therefore, Φn(x) ∈ Z[x].

Next, we verify the irreducibility. Suppose not, so Φn(x) = f(x)g(x) for f, g ∈ Z[x] monic
polynomials, and assume that f(x) is irreducible. Let ζ be a primitive nth root of unity that is
a factor of f(x), which implies that f(x) is the minimal polynomial for ζ. Then, for any prime
p such that p does not divide n, ζp is also a primitive nth root of unity, so ζp must be a root
of f or g. If it were a root of g, then g(ζp) = 0, and as f was the minimal polynomial of ζ,
f(x) must divide g(xp) ∈ Z[x], i.e. g(xp) = f(x)h(x) for some h(x) ∈ Z[x]. Mod p, using that
g(xp) = (g(x))p in Fp[x] (recall: every coefficient satisfies api = ai by Fermat’s Little Theorem), we
have (g(x))p = f(x)h(x) ∈ Fp[x] which is a UFD, so f(x) and g(x) have some common factor in
Fp[x]. Therefore, Φn(x) = f(x)g(x) has a multiple root in Fp[x] (the root of the common factor).
This is a contradiction: there are n distinct roots of unity over any field of characteristic not
dividing n.

Therefore, ζp must be a root of f(x) for every p not dividing n, which implies that for any a
relatively prime to n, a = p1 . . . pk where pi ∤ n, and ζa = ((ζp1)p2) . . .pk is a root of f(x). In
other words, every primitive nth root of unity is a root of f(x), which implies f(x) = Φn(x) is
irreducible. □

By construction, this implies:

Corollary 2.4. [Q(ζn) : Q] = ϕ(n).
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