
FEBRUARY 15 NOTES

1. 13.4: Splitting Fields and Algebraic Closures

To end this section, we will construct the algebraic closure of a field F , a field in which every
polynomial in F [x] factors completely.

Definition 1.1. A field F is called an algebraic closure of F if F is algebraic over F and every
polynomial f(x) ∈ F [x] splits completely over F . In other words, F contains all of the elements
algebraic over F .

A field K is algebraically closed if every polynomial with coefficients in K has a root in K.
Note that this implies that every polynomial splits completely in K.

Proposition 1.2. For any field F , there exists an algebraically closed field K containing F .

Proof. For every nonconstant monic polynomial f(x) ∈ F [x], let xf represent a variable. Consider
the polynomial ring R = F [. . . xf . . . ] generated over F by all of these variables. Because f is a
polynomial, we can plug in the variable xf . Let I be the ideal generated by all of the polynomials
of the form f(xf ).

Claim: I is proper. Why? If not, then 1 ∈ I, so we can form 1 as a finite R-linear combination
of some of these polynomials, i.e.

1 = g1f1(xf1) + · · ·+ gnfn(xfn)

for gi ∈ R. For simplicity, denote xfi by xi. Because each gi is a polynomial, there is a finite
number of variables appearing in all of the gi’s, so this relation is just

1 = g1(x1, . . . , xm)f1(x1) + · · ·+ gn(x1, . . . , xm)fn(xn).

Let F ′ be a finite extension of F containing a root αi of fi for each i. Then, in F ′, we have 1 = 0,
a contradiction. Therefore, I is proper.

Because I is proper, it is contained in some maximal idealM . Therefore, the quotientK1 = R/M
is a field containing F and each polynomial f in F [x] has a root inK1 by construction (we quotiented
by an ideal containing f(xf ), so the root is the image of xf ). Now, we can repeat this procedure
to produce a field K2 in which every polynomial with coefficients in K1 has a root, and so on, to
obtain a sequence of fields

F = K0 ⊂ K1 ⊂ K2 ⊂ . . .

where each polynomial in Kj has a root in Kj+1.
Define

K = ∪j≥0Kj

so K is a field containing F , and for any polynomial h with coefficients in K, h has only finitely
many terms so each term must appear in KN for some (possibly very large N), i.e. h(x) ∈ KN [x].
By construction, h has a root in KN+1 which is contained in K, so h has a root in K. Therefore,
K is algebraically closed. □

Finally, because we now know that algebraically closed fields exist, we can show:

Proposition 1.3. Let F be a field. The algebraic closure of F exists and is unique up to isomor-
phism.
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Proof. By the previous proposition, we can find an algebraically closed field containingK containing
F . Let F be the elements ofK that are algebraic over F . By definition, this is an algebraic extension
of F . Because any f(x) ∈ F [x] splits completely in K, every root α of f(x) is contained in K. By
definition, α is algebraic over F , so α is contained in F . Therefore, f splits completely in F [x] so
F is an algebraic closure of F .

The proof of uniqueness is omitted. (Idea: use uniqueness of splitting field of each polynomial.)
□

Something we will prove in the future is:

Theorem 1.4. The field C is algebraically closed.

By the proof of the previous proposition, because Q ⊂ C, the algebraic closure of Q therefore
exists and is contained in C. So, whenever we do computations with algebraic elements over Q, we
may assume that everything is happening in C.

2. 13.5: Separable and Inseparable Extensions

Definition 2.1. If f(x) ∈ F [x] is a polynomial, over the splitting field for f we can factor f as

f(x) = (x− α1)
n1 . . . (x− αk)

nk

where the αi are the distinct roots of the polynomial and ni ≥ 1. The numbers ni are called the
multiplicities of the roots αi. If ni = 1, αi is called a simple root and if ni > 1, αi is called a
multiple root.

Definition 2.2. A polynomial F is called separable if it has no multiple roots. It is called
inseparable if it has multiple roots.

This depends on the field.

Example 2.3. The polynomial x2 − 2 is separable over Q because its two roots are distinct.

Example 2.4. The polynomial x2 − t over the field F = F2(t) (rational functions over F2) is
irreducible but inseparable. The root

√
t /∈ F but because charF = 2, and 1 = −1 in F2,

(x−
√
t)2 = x2 − 2x

√
t+ t = x2 − t

so
√
t is a multiple root.

Definition 2.5. If f(x) = anx
n + · · · + a0 ∈ F [x] is a polynomial, the derivative of f is defined

as
Dxf(x) = nanx

n−1 + · · ·+ a1 ∈ F [x].

This is the usual formula for the derivative, but keep in mind that it does not have a geometric
meaning at this point (has nothing to do with the usual calculus construction involving limits).
But, from the definition, one can show that the usual ‘rules’ in calculus (e.g. the product rule) still
hold.

Definition 2.6. A polynomial f(x) has a multiple root α if and only if α is also a root of Dxf(x),
i.e. f(x) and Dxf(x) are both divisible by the minimal polynomial of α. In particular, f(x) is
separable if and only if it is relatively prime to its derivative.

Proof. Suppose α is a multiple root, so in some splitting field, f(x) = (x−α)ng(x) for some n ≥ 2.
Then, Dxf(x) = n(x− a)n−1g(x) + (x− a)nDxg(x) has α as a root.

Conversely, if α is a root of both f(x) and Dxf(x), then we know f(x) = (x−a)h(x), and taking
the derivative yieldsDxf(x) = h(x)+(x−α)Dxh(x), or equivalently h(x) = Dxf(x)−(x−α)Dxh(x).
Because α is a root of the right hand side, it is also a root of h(x) and hence h(x) = (x− α)g(x),
i.e. f(x) = (x− α)2g(x) so α is a multiple root. □
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Example 2.7. The polynomial xn − 1 has derivative nxn−1. Over any field of characteristic not
dividing n, the only root of the derivative is 0, which is not a root of xn − 1, so xn − 1 is separable.

If the characteristic divides n, then the derivative is 0, so every element of the field is a root of
the derivative, and hence every root of xn − 1 is a multiple root and xn − 1 is inseparable.

Example 2.8. The polynomial xp
n − x over Fp has derivative pnxp

n−1 − 1 = −1 ̸= 9, so the
derivative has no roots. This implies that xp

n − x is separable.

Separability is most interesting over fields of characteristic p, because:

Corollary 2.9. Every irreducible polynomial over a field of characteristic 0 is separable. A general
polynomial over a field of characteristic 0 is separable if and only if it is the product of distinct (up
to multiplication by a unit) irreducible polynomials.

Proof. Suppose charF = 0 and p(x) ∈ F [x] is irreducible of degree n. Because p(x) is irreducible,
its only factors (up to multiplication by a unit) are 1 and p(x), and Dxp(x) has degree n− 1 so is
not divisible by p(x). Hence, p(x) and Dxp(x) are relatively prime and therefore have no common
root.

The second statement follows because distinct irreducible polynomials never have roots in com-
mon: if p(x) is irreducible, it is (up to multiplication by a unit) the minimal polynomial of any of
its roots, and if q(x) is any other irreducible polynomial with a common root, then it must also be
divisible by the minimal polynomial and hence equal to p(x) (up to a unit). □

Remark 2.10. Even in characteristic p, if Dxp(x) is non-zero, the same proof applies to show
irreducible polynomials are separable. So, the only way to find inseparable irreducible polynomials
is to have those whose derivative is identically 0.

We can actually say more: suppose p(x) ∈ F [x] is an inseparable irreducible polynomial over a
field F of characteristic p. To be inseparable, the derivative must be identically 0, i.e. Dxp(x) = 0,
which is possible if and only if each exponent in the polynomial p(x) is a multiple of p. In other
words,

p(x) = amxmp + am−1x
(m−1)p + · · ·+ a1x

p + a0
so p(x) = q(xp) for the polynomial q(x) given by

q(x) = amxm + am−1x
(m−1) + · · ·+ a1x+ a0.
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