
FEBRUARY 13 NOTES

1. 13.4: Splitting Fields and Algebraic Closures

Let F be a field and f(x) ∈ F [x] a polynomial. Then, we know there exists an extension K of
F in which f(x) has a root α. (We proved the existence of K for f irreducible, but we can apply
that construction to an irreducible factor of any polynomial.)

If f(x) has a root α in a field K, this implies that f(x) factors as (x − α)g(x) in K[x]. (Proof:
divide f(x) by x− a using polynomial long division and apply the fact that α is a root of f(x) and
x− a.)

Fields in which polynomials factor completely into linear factors have a special name:

Definition 1.1. Let f(x) ∈ F [x] be a polynomial. A splitting field of f(x) ∈ F [x] is an extension
K/F in which f(x) factors completely into linear factors (‘splits completely’) in K[x] but does not
factor completely over any proper subfield of K containing F .

A preliminary exercise/fact about polynomials:

Exercise 1.2. If f(x) ∈ F [x] is a polynomial of degree n, then f has at most n roots in F . (Hint:
use induction on degree of f .) It has exactly n roots in F (counting multiplicities) if and only if
f(x) splits completely over F .

Theorem 1.3. If F is a field and f(x) ∈ F [x], a splitting field for f(x) exists.

Proof. We use induction on the degree of f to show F admits an extension E in which f(x) splits
completely. If f(x) has degree 1, then E = F and this is clear. If n = deg f > 1 and all irreducible
factors of f(x) have degree 1, then still E = F . So, assume n > 1 and at least one irreducible
factor p(x) of f(x) has degree at least 2. Then, there exists an extension E1 of F in which p(x) has
a root, i.e. p(x) is divisible by (x−α) in E1[x] for some root α of p(x). Then, f(x) = (x−α)f1(x)
and deg f1 = n−1 so by induction there is an extension E of E1 (and hence of F ) in which f1 (and
hence f) splits completely. Therefore, an extension E of F containing all roots {αi} of f(x) exists.
Let K = F ({αi}) ⊂ E. By definition, K is the smallest subfield that contains F and all roots of
f(x) so K is the splitting field of F . □

Definition 1.4. If K is an algebraic extension of F such that K is the splitting field of some
collection of polynomials f(x) ∈ F [x], then K is a normal extension of F .

Example 1.5. The splitting field for x2 − 2 over Q is Q(
√
2), since the roots of x2 − 2 are just

±
√
2, which are both contained in Q(

√
2).

Example 1.6. The splitting field for (x2 − 2)(x2 − 3) is Q(
√
2,
√
3) since it contains all roots

±
√
2,±

√
3. We have several intermediate subfields betweenQ andQ(

√
2,
√
3), namelyQ(

√
2),Q(

√
3),

and Q(
√
6).

Example 1.7. The splitting field of x3 − 2 over Q is not Q( 3
√
2): the other two roots of x3 − 2 are

complex numbers that are not contained in Q( 3
√
2) (because it is contained in R). We can compute

the other roots, which are
3√2
2 (−1 +

√
−3) and

3√2
2 (−1−

√
−3).

To get the splitting field K, we must adjoin all three roots α1, α2, α3 to Q. But, note that this
field contains 2α3/α1 + 1 =

√
−3, so K contains

√
−3. Because we can write any of the roots as a

combination of 3
√
2 and

√
−3, this implies that K = Q( 3

√
2,
√
−3) is the splitting field.
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Note also that [Q( 3
√
2) : Q] = 3, and [Q( 3

√
2,
√
−3) : Q( 3

√
2)] > 1 because Q( 3

√
2) was not

the splitting field. Because
√
−3 satisfies the polynomial x2 + 3 = 0 over Q( 3

√
2), we have that

[Q( 3
√
2,
√
−3) : Q( 3

√
2)] = 2, so together this implies [Q( 3

√
2,
√
−3) : Q] = 6. In particular, the

degree of the splitting field is strictly greater than the degree of the polynomial.

In general, if f(x) ∈ F [x] has degree n, then adjoining one root of f(x) to F generates an
extension of degree at most n, and then f(x) has at most one linear factor, so adjoining the next
root generates an extension of degree at most n− 1, etc, to conclude that:

Proposition 1.8. A splitting field of a polynomial of degree n over F has degree at most n!.

Splitting fields of degree n polynomials can have degree anywhere between 1 and n!.

Example 1.9. One example of splitting field that we understand relatively well is that of cyclotomic
polynomials. The polynomial xn − 1 ∈ Q[x] is called a cyclotomic polynomial and the roots of
this polynomial are called the nth roots of unity. We can express all of the roots as

ζkn := e2πki/n = cos(2πk/n) + i sin(2πk/n), k = 0, 1, . . . , n− 1.

Geometrically, these are n equally spaced points around the unit circle starting with (1, 0).
Because we have found n roots of xn − 1, these must be all of the roots of this polynomial and,

because they are all contained in C, there exists a splitting field for xn − 1 over Q contained in C,
namely K = Q(ζn, . . . , ζ

n−1
n ).

From group theory, recall that the nth roots of unity form a group under multiplication,
isomorphic to the cyclic group Zn. A generator of this group is called a primitive nth root of
unity, and by abuse of notation, is denoted by ζn. By the isomorphism Zn with the roots of unity
given by k 7→ ζkn, we see that the generators for this group are precisely ζan where gcd(a, n) = 1, i.e.
there are ϕ(n) different primitive nth roots of unity, where ϕ(n) is the Euler ϕ-function.

Because every root of unity is obtained as a power of ζn for a primitive nth root, the field Q(ζn)
contains all nth roots of unity and is therefore the splitting field of xn − 1. This field is called the
cyclotomic field.

The degree of the cyclotomic field over Q will turn out to be ϕ(n), which we will prove later.
This can be nontrivial to compute; for example, the polynomial xn − 1 is reducible for all n > 1
(because x− 1 is a factor). As a preliminary exercise to try: if p is prime, prove that the minimal
polynomial of ζp is xp−1 + xp−2 + · · ·+ x+ 1, so [Q(ζn) : Q] = p− 1.

Example 1.10. Let p be prime and consider the polynomial xp − 2. We find that the roots are
precisely ζkp

p
√
2, where ζp is a primitive pth root of unity. The splitting field therefore contains p

√
2

(corresponding to k = 0, and ζp because it is the ratio of any two roots. Therefore, the splitting

field contains Q( p
√
2, ζp), but every root of xp − 2 lies in this field, so the splitting field must be

exactly Q( p
√
2, ζp). This field contains two subfields, Q( p

√
2) (which has degree p over Q) and Q(ζp)

(which has degree p−1 over Q). So, Q( p
√
2, ζp) has degree at most p(p−1) but the degree is divisible

by both p and p−1 which are relatively prime, so we have [Q( p
√
2, ζp) : Q] = p(p−1). In particular,

xp − 2 must be irreducible over Q(ζp) because this implies that the degree [Q( p
√
2, ζp) : Q(ζp)] = p.

This is highly non-obvious!

Back to some theorems:

Theorem 1.11. Let ϕ : F → F ′ be an isomorphism and let f(x) ∈ F [x]. Define f ′(x) to be the
polynomial obtained by applying ϕ to the coefficients of f . If E is a splitting field for f(x) and E′

a splitting field for f ′, then ϕ : F → F ′ extends to an isomorphism Φ : E → E′.

Proof. (Sketch) Use induction on the degree, noting that we already prove this for adding one root
of a polynomial to F and F ′. We omit the full details. □

By applying the theorem to the identity map F → F , we see that:
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Corollary 1.12. Any two splitting fields for f(x) ∈ F [x] are isomorphic.

We therefore usually refer to a splitting field as the splitting field.
To end this section, we will construct the algebraic closure of a field F , a field in which every

polynomial in F [x] factors completely.

Definition 1.13. A field F is called an algebraic closure of F if F is algebraic over F and every
polynomial f(x) ∈ F [x] splits completely over F . In other words, F contains all of the elements
algebraic over F .

A field K is algebraically closed if every polynomial with coefficients in K has a root in K.
Note that this implies that every polynomial splits completely in K.

Proposition 1.14. Let F be an algebraic closure of F . Then, F is algebraically closed.

Proof. If f(x) ∈ F [x] is a polynomial and α a root of f(x), then F (α) is an algebraic extension of
F , but F is algebraic over F , so F (α) is algebraic over F and hence α is algebraic over F . This
implies that α ∈ F by definition of F , so F is algebraically closed. □

We need to show that algebraic closures exist. Idea: keep adding roots of polynomials f(x) and
then F should be the field ‘generated’ over F by all of the roots. In order for this to make sense,
we need there to be some field where all of the roots lie (this is needed to say ‘generated’ over F ).
We will therefore first construct some huge algebraically closed field containing F , and then look
at the appropriate subfield to get the algebraic closure.

Proposition 1.15. For any field F , there exists an algebraically closed field K containing F .

Proof. For every nonconstant monic polynomial f(x) ∈ F [x], let xf represent a variable. Consider
the polynomial ring R = F [. . . xf . . . ] generated over F by all of these variables. Because f is a
polynomial, we can plug in the variable xf . Let I be the ideal generated by all of the polynomials
of the form f(xf ).

Claim: I is proper (to be verified next time.
Because I is proper, it is contained in some maximal idealM . Therefore, the quotientK1 = R/M

is a field containing F and each polynomial f in F [x] has a root inK1 by construction (we quotiented
by an ideal containing f(xf ), so the root is the image of xf ). Now, we want to repeat this procedure
to produce a field K2 in which every polynomial with coefficients in K1 has a root, and so on, to
obtain a sequence of fields

F = K0 ⊂ K1 ⊂ K2 ⊂ . . .

where each polynomial in Kj has a root in Kj+1. We will finish this proof next time! □

For example, something we will prove in the future is:

Theorem 1.16. The field C is algebraically closed. The field C is the algebraic closure of R.

By the proof of the previous proposition, because Q ⊂ C, the algebraic closure of Q therefore
exists and is contained in C. So, whenever we do computations with algebraic elements over Q, we
may assume that everything is happening in C.
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