
FEBRUARY 8 NOTES

1. 13.2: Algebraic Extensions

From last time:

Definition 1.1. Let F be a field and let K be an extension of F . An element α ∈ K is algebraic
over F if α is a root of some nonzero polynomial f(x) ∈ F [x]. If α is not algebraic over F , we
say that α is transcendental over F . The extension K/F is algebraic if every element of K is
algebraic over F .

Remark 1.2. If α is algebraic over F , then it is algebraic over any extension L of F (because
algebraicity over F implies it is a root of a polynomial in F [x], and F ⊂ L, so it is a root of a
polynomial in L[x]).

Proposition 1.3. Let α be algebraic over F . Then, there is a unique monic irreducible polynomial
mα,F (x) ∈ F [x] which has α as a root. A polynomial f(x) ∈ F [x] has α as a root if and only if
mα,F (x) divides f(x) in F [x].

This polynomial is called the minimal polynomial for α over F . If F is clear from context, it
is denoted simply by mα(x). The degree of α is defined to be the degree of mα(x).

We ended last time proving a theorem that implies:

Corollary 1.4. If K/F is finite, then it is algebraic.

Example 1.5. Let F be a field of characteristic not equal to 2 and let K/F be any extension
with [K : F ] = 2. Then, for any α ∈ K with α /∈ F , degmα(x) ≤ 2. It cannot be 1 because
α /∈ F . Therefore, the minimal polynomial of α is mα(x) = x2 + bx + c for some b, c ∈ F . Also,
since F ⊂ F (α) ⊂ K and F (α) and K are both two dimensional vector spaces over F , we have
K = F (α).

We can determine all possible elements in K by the quadratic formula: we find that

α =
−b±

√
b2 − 4c

2

where the symbol
√
b2 − 4c denotes the root of the equation x2−(b2−4c) = 0. Let

√
D =

√
b2 − 4c.

Because α ∈ F (
√
D) by definition and we can similarly show

√
D ∈ F (α), we have F (α) = F (

√
D).

Therefore, every degree 2 extension K of F is of the form F (
√
D) where D ∈ F is not a square.

These extensions are called quadratic extensions of F .

A few more generalities on field extensions:

Theorem 1.6. Let F ⊂ K ⊂ L be fields. Then, [L : F ] = [L : K][K : F ].

Proof. Suppose first that [L : K] = m and [K : F ] = n. If {αi} is a basis for L/K and {βj} is a
basis for K/F , then every element of L can be written as

∑
aiαi for some ai ∈ K, but every ai ∈ K

can be written as
∑

bijβj , so every element in L can be written as
∑

bijαiβj , i.e. the elements αiβj
span the vector space L over F . It suffices to show that they are linearly independent. If there is a
linear combination

∑
bijαiβj = 0, then following the process in reserve and defining ai =

∑
bijβj ,

we find that
∑

aiαi = 0, which implies that each ai = 0. This implies that 0 = ai =
∑

bijβj , so we
conclude bij = 0 for all i, j and hence the elements αiβj are linearly independent. This basis has
mn elements, so we conclude that [L : F ] = [L : K][K : F ].
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Now, suppose something in the desired expression is infinite. Note that the previous paragraph
shows that, if [L : K] and [K : F ] are both finite, then [L : F ] is finite, so if [L : F ] is infinite,
either [L : K] or [K : F ] is infinite. If [K : F ] is infinite, as K ⊂ L, we must have [L : F ] infinite.
Similarly, if [L : K] is infinite, then [L : F ] is infinite. Therefore, if one side of the equation is
infinite, so is the other. □

Corollary 1.7. If L/F is finite and F ⊂ K ⊂ L, then [K : F ] divides [L : F ].

This allows us to prove *specific things about numbers*!

Example 1.8. The element
√
2 cannot be contained in any field Q(α) where Q(α)/Q has degree

3, because 2 does not divide 3. Therefore, if α is any root of an irreducible degree 3 polynomial
over Q, we cannot write

√
2 as a rational linear combination of 1, α, α2.

Example 1.9. Because [Q( 6
√
2) : Q] = 6 and ( 6

√
2)3 =

√
2, we have Q(

√
2) ⊂ Q( 6

√
2), and by

multiplicativity of degrees, [Q( 6
√
2) : Q(

√
2)] = 3. Therefore, the minimal polynomial of 6

√
2 over

Q(
√
2) has degree 3. Because x3 −

√
2 is a monic polynomial of degree 3 over Q(

√
2) with 6

√
2 as a

root, it must be the minimal polynomial and hence must be irreducible over Q(
√
2).

Definition 1.10. An extension K/F is finitely generated if there exist {α1, . . . , αn} ∈ K such that
K = F (α1, . . . , αn).

We can compute these field extensions ‘recursively’, i.e.

Lemma 1.11. F (α, β) = (F (α))(β).

Proof. This follows directly from minimality in the definition of these extensions. Because F (α, β)
contains F and α, it contains F (α), and because it contains F (α) and β, it must contain (F (α))(β).
Conversely, (F (α))(β) contains F and α and β so must contain F (α, β). Therefore, they are
equal. □

This tells us that K = F (α1, . . . , αn) can be constructed iteratively by first letting F1 = F (α1)
be the field generated by α1 over F , and then F2 = F1(α2) the field generated by α2 over F1 (which
may be different than that over F !), etc to get a sequence

F = F0 ⊂ F1 ⊂ · · · ⊂ Fn = K

and supposing that αi is algebraic over F of degree di, then αi is algebraic over Fi of degree at
most di, so we obtain that

[K : F ] = [Fn : Fn−1] . . . [F2 : F1][F1 : F0] ≤ d1 . . . dn.

Example 1.12. The field Q( 6
√
2,
√
2) is just Q( 6

√
2) since

√
2 is already in Q( 6

√
2).

Example 1.13. The fieldQ(
√
2,
√
3) is an extension ofQ(

√
2). We know the degree of the extension

is at most 2 because
√
3 is a root of x2 − 3, but we need to show that this still is irreducible over

Q(
√
2). This polynomial only has degree 2, so it is reducible if and only if it has a root in Q(

√
2),

which means
√
3 ∈ Q(

√
2). We can show this is impossible: if

√
3 = a+ b

√
2 for rational numbers

a, b, then we get 3 = (a2 + 2b2) + 2ab
√
2. If ab ̸= 0, then we can solve for

√
2 to conclude that√

2 is rational, a contradiction, so we must have ab = 0. If b = 0, then
√
3 = a is rational, a

contradiction. If a = 0, then
√
3 = b

√
2, which says

√
6 = 2b, or

√
6 is rational, a contraction.

Thus, [Q(
√
3,
√
2) : Q(

√
2)] is 2, so [Q(

√
3,
√
2) : Q(

√
2)] = 4.

Using this, we can write a basis for Q(
√
3,
√
2): we must have 1,

√
2,
√
3, but then we must also

have
√
2
√
3 =

√
6 which is independent from the previous three, so these four elements are a basis.

Theorem 1.14. The extension K/F is finite if and only if K is generated by a finite number of
algebraic elements over F , and if these elements have degrees di, then [K : F ] has degree ≤ Πdi.
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Proof. If K/F is finite of degree n, let α1, . . . , αn be a basis for K over F . These are all algebraic
because [K : F ] is finite and therefore K is generated by a finite number of algebraic elements over
F . The converse and result on degree was proved above. □

Corollary 1.15. Suppose α, β are algebraic over F . Then, α±β, αβ, α/β (for β ̸= 0) are algebraic
over F .

Proof. These elements all lie in F (α, β) which is finite over F , hence they are algebraic. □

Finally, note that we could extend these ideas slightly more generally:

Definition 1.16. Let K1,K2 ⊂ K be fields. The composite field of K1,K2 is denoted K1K2 and
is the smallest subfield of K containing both K1 and K2. (One can similarly define the composite
field of any collection of subfields of K.)

By similar arguments to those above, one can show that

[K1K2 : F ] = [K1K2 : K1][K1 : F ] = [K1K2 : K2][K2 : F ] ≤ [K1 : F ][K2 : F ].

Note that this implies [Ki : F ] divides [K1K2 : F ], so for example, if gcd([K1 : F ], [K2 : F ]) = 1,
we have [K1K2 : F ] = [K1 : F ][K2 : F ].

2. 13.3: Straightedge and Compass Constructions

Finally, we say a few things about what angles and lengths and be constructed with just a
straightedge and compass. Let us translate into algebraic terms: let 1 denote a fixed unit distance,
so any length is a ∈ R a real number. We consider the usual xy-plane and view everything in this
section in R2. We want to consider the problem of which lengths in R can be obtained from a
compass and straightedge knowing just this unit distance. The lengths for which this is possible
are the constructible real numbers.

We are allowed to:

(1) Draw a straight line connecting any two points.
(2) Mark a point of intersection of any two lines.
(3) Draw a circle with a given radius and center.
(4) Mark a point of intersection of lines and circles or multiple circles.

Exercise 2.1. Show that, given any line L, you can (1) draw a perpendicular line through any
point of L, and then (2) draw any line parallel to L. (Hint for (1): draw several circles.)

From some geometry and similar triangles, we can construct several numbers:

Example 2.2. Suppose we are given two lengths a, b. Then, we may construct a± b, ab, a/b, and√
a. We illustrate this pictorially (using that we can draw parallel and perpendicular lines):

How does this relate to field extensions?

Proposition 2.3. If an element α ∈ R is obtained from a field F ⊂ R by a series of compass and
straightedge constructions, then [F (α) : F ] = 2k for some integer k.
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Before the proof, some examples of applications:

Example 2.4. Is it possible, using only a straightedge and compass, to construct a cube with
precisely twice the volume of a given cube?

The answer is no! If so, we would need to start with a cube with side length 1 (so volume 1),
and then construct a cube with volume 2, i.e. side length 3

√
2. Because [Q( 3

√
2) : Q] = 3 ̸= 2k, this

is not possible.

Example 2.5. Starting with a given angle θ, is it possible to use only a compass and straightedge
to trisect this angle?

The answer is no! If any given angle θ could be constructed, then we could determine the point
at distance 1 from the origin along the line in angle θ, i.e. cos θ (the x-coordinate) and sin θ (the
y-coordinate) can be constructed. Conversely, if we know cos θ and sin θ, then we can construct
the angle θ. So, trisecting the angle is equivalent to starting with cos θ and finding cos θ/3. This is
not always possible! There is a trig identity that says:

cos θ = 4 cos3 θ/3− 3 cos θ/3

so if θ = 60, then cos θ = 1/2, and letting β = cos 20, we get

4β3 − 3β − 1/2 = 0

or
8β3 − 6β − 1 = 0.

Letting α = 2β, this becomes α3 − 3α − 1 = 0. This is an irreducible polynomial over Q (for
instance, one could use the rational root theorem) so the extension [Q(α) : Q] = 3 but this is again
not a power of 2.

Now, let’s prove the theorem:

Proof. Suppose we start with a field F ⊂ R of things we have constructed. (We know, from 1, we
can construct all rational numbers, so the collection of elements that are constructible from 1 is
some field larger than Q in R.) A straight line connecting any two points with coordinates in F
has equation of the form ax+ by− c = 0 where a, b, c ∈ F . Solving two such equations (finding the
intersection point) gives solutions in F , so using only a straightedge will just produce points in F .

Using a compass, supposing we have constructed the coordinates of the center (h, k) and the
radius r, we have equation (x− h)2 + (y − k)2 = r2 where h, k, r ∈ F .

We can compute the intersection point of lines with coordinates in F , i.e. ax+by−c, and solving
for y and substituting into the equation of the circle, the x-coordinate of the point of intersection lies
in (at worst) a quadratic extension of F , and hence so does y as it is linear in x. If we intersect two
circles, (x−h)2+(y−k)2 = r2 and (x−h′)2+(y−k′)2 = r′2 we can subtract the first from the second
to get the equations (x−h)2+(y−k)2 = r2 and 2(h′−h)x+2(k′−k)y = r2−h2−k2−r′2+h′2+k′2

which is just the intersection of a circle and line, so the coordinates lie in a quadratic extension
of F . Therefore, if α ∈ R is obtained from elements in F by a finite sequence of straightedge and
compass operations, then α is an element of an extension field K/F with [K : F ] = 2m, and hence
[F (α) : F ] = 2k for some k ≤ m because it is a divisor of 2m. □
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