FEBRUARY 8 NOTES

1. 13.2: Algebraic Extensions

From last time:
Definition 1.1. Let F be a field and let K be an extension of F. An element $\alpha \in K$ is algebraic over F if α is a root of some nonzero polynomial $f(x) \in F[x]$. If α is not algebraic over F, we say that α is transcendental over F. The extension K / F is algebraic if every element of K is algebraic over F.

Remark 1.2. If α is algebraic over F, then it is algebraic over any extension L of F (because algebraicity over F implies it is a root of a polynomial in $F[x]$, and $F \subset L$, so it is a root of a polynomial in $L[x]$).
Proposition 1.3. Let α be algebraic over F. Then, there is a unique monic irreducible polynomial $m_{\alpha, F}(x) \in F[x]$ which has α as a root. A polynomial $f(x) \in F[x]$ has α as a root if and only if $m_{\alpha, F}(x)$ divides $f(x)$ in $F[x]$.

This polynomial is called the minimal polynomial for α over F. If F is clear from context, it is denoted simply by $m_{\alpha}(x)$. The degree of α is defined to be the degree of $m_{\alpha}(x)$.

We ended last time proving a theorem that implies:
Corollary 1.4. If K / F is finite, then it is algebraic.
Example 1.5. Let F be a field of characteristic not equal to 2 and let K / F be any extension with $[K: F]=2$. Then, for any $\alpha \in K$ with $\alpha \notin F$, $\operatorname{deg} m_{\alpha}(x) \leq 2$. It cannot be 1 because $\alpha \notin F$. Therefore, the minimal polynomial of α is $m_{\alpha}(x)=x^{2}+b x+c$ for some $b, c \in F$. Also, since $F \subset F(\alpha) \subset K$ and $F(\alpha)$ and K are both two dimensional vector spaces over F, we have $K=F(\alpha)$.

We can determine all possible elements in K by the quadratic formula: we find that

$$
\alpha=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

where the symbol $\sqrt{b^{2}-4 c}$ denotes the root of the equation $x^{2}-\left(b^{2}-4 c\right)=0$. Let $\sqrt{D}=\sqrt{b^{2}-4 c}$. Because $\alpha \in F(\sqrt{D})$ by definition and we can similarly show $\sqrt{D} \in F(\alpha)$, we have $F(\alpha)=F(\sqrt{D})$.

Therefore, every degree 2 extension K of F is of the form $F(\sqrt{D})$ where $D \in F$ is not a square. These extensions are called quadratic extensions of F.

A few more generalities on field extensions:
Theorem 1.6. Let $F \subset K \subset L$ be fields. Then, $[L: F]=[L: K][K: F]$.
Proof. Suppose first that $[L: K]=m$ and $[K: F]=n$. If $\left\{\alpha_{i}\right\}$ is a basis for L / K and $\left\{\beta_{j}\right\}$ is a basis for K / F, then every element of L can be written as $\sum a_{i} \alpha_{i}$ for some $a_{i} \in K$, but every $a_{i} \in K$ can be written as $\sum b_{i j} \beta_{j}$, so every element in L can be written as $\sum b_{i j} \alpha_{i} \beta_{j}$, i.e. the elements $\alpha_{i} \beta_{j}$ span the vector space L over F. It suffices to show that they are linearly independent. If there is a linear combination $\sum b_{i j} \alpha_{i} \beta_{j}=0$, then following the process in reserve and defining $a_{i}=\sum b_{i j} \beta_{j}$, we find that $\sum a_{i} \alpha_{i}=0$, which implies that each $a_{i}=0$. This implies that $0=a_{i}=\sum b_{i j} \beta_{j}$, so we conclude $b_{i j}=0$ for all i, j and hence the elements $\alpha_{i} \beta_{j}$ are linearly independent. This basis has $m n$ elements, so we conclude that $[L: F]=[L: K][K: F]$.

Now, suppose something in the desired expression is infinite. Note that the previous paragraph shows that, if $[L: K]$ and $[K: F]$ are both finite, then $[L: F]$ is finite, so if $[L: F]$ is infinite, either $[L: K]$ or $[K: F]$ is infinite. If $[K: F]$ is infinite, as $K \subset L$, we must have $[L: F]$ infinite. Similarly, if $[L: K]$ is infinite, then $[L: F]$ is infinite. Therefore, if one side of the equation is infinite, so is the other.
Corollary 1.7. If L / F is finite and $F \subset K \subset L$, then $[K: F]$ divides $[L: F]$.
This allows us to prove ${ }^{*}$ specific things about numbers*!
Example 1.8. The element $\sqrt{2}$ cannot be contained in any field $\mathbb{Q}(\alpha)$ where $\mathbb{Q}(\alpha) / \mathbb{Q}$ has degree 3 , because 2 does not divide 3 . Therefore, if α is any root of an irreducible degree 3 polynomial over \mathbb{Q}, we cannot write $\sqrt{2}$ as a rational linear combination of $1, \alpha, \alpha^{2}$.
Example 1.9. Because $[\mathbb{Q}(\sqrt[6]{2}): \mathbb{Q}]=6$ and $(\sqrt[6]{2})^{3}=\sqrt{2}$, we have $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[6]{2})$, and by multiplicativity of degrees, $[\mathbb{Q}(\sqrt[6]{2}): \mathbb{Q}(\sqrt{2})]=3$. Therefore, the minimal polynomial of $\sqrt[6]{2}$ over $\mathbb{Q}(\sqrt{2})$ has degree 3. Because $x^{3}-\sqrt{2}$ is a monic polynomial of degree 3 over $\mathbb{Q}(\sqrt{2})$ with $\sqrt[6]{2}$ as a root, it must be the minimal polynomial and hence must be irreducible over $\mathbb{Q}(\sqrt{2})$.
Definition 1.10. An extension K / F is finitely generated if there exist $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \in K$ such that $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

We can compute these field extensions 'recursively', i.e.
Lemma 1.11. $F(\alpha, \beta)=(F(\alpha))(\beta)$.
Proof. This follows directly from minimality in the definition of these extensions. Because $F(\alpha, \beta)$ contains F and α, it contains $F(\alpha)$, and because it contains $F(\alpha)$ and β, it must contain $(F(\alpha))(\beta)$. Conversely, $(F(\alpha))(\beta)$ contains F and α and β so must contain $F(\alpha, \beta)$. Therefore, they are equal.

This tells us that $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ can be constructed iteratively by first letting $F_{1}=F\left(\alpha_{1}\right)$ be the field generated by α_{1} over F, and then $F_{2}=F_{1}\left(\alpha_{2}\right)$ the field generated by α_{2} over F_{1} (which may be different than that over F !), etc to get a sequence

$$
F=F_{0} \subset F_{1} \subset \cdots \subset F_{n}=K
$$

and supposing that α_{i} is algebraic over F of degree d_{i}, then α_{i} is algebraic over F_{i} of degree at most d_{i}, so we obtain that

$$
[K: F]=\left[F_{n}: F_{n-1}\right] \ldots\left[F_{2}: F_{1}\right]\left[F_{1}: F_{0}\right] \leq d_{1} \ldots d_{n} .
$$

Example 1.12. The field $\mathbb{Q}(\sqrt[6]{2}, \sqrt{2})$ is just $\mathbb{Q}(\sqrt[6]{2})$ since $\sqrt{2}$ is already in $\mathbb{Q}(\sqrt[6]{2})$.
Example 1.13. The field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is an extension of $\mathbb{Q}(\sqrt{2})$. We know the degree of the extension is at most 2 because $\sqrt{3}$ is a root of $x^{2}-3$, but we need to show that this still is irreducible over $\mathbb{Q}(\sqrt{2})$. This polynomial only has degree 2 , so it is reducible if and only if it has a root in $\mathbb{Q}(\sqrt{2})$, which means $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$. We can show this is impossible: if $\sqrt{3}=a+b \sqrt{2}$ for rational numbers a, b, then we get $3=\left(a^{2}+2 b^{2}\right)+2 a b \sqrt{2}$. If $a b \neq 0$, then we can solve for $\sqrt{2}$ to conclude that $\sqrt{2}$ is rational, a contradiction, so we must have $a b=0$. If $b=0$, then $\sqrt{3}=a$ is rational, a contradiction. If $a=0$, then $\sqrt{3}=b \sqrt{2}$, which says $\sqrt{6}=2 b$, or $\sqrt{6}$ is rational, a contraction. Thus, $[\mathbb{Q}(\sqrt{3}, \sqrt{2}): \mathbb{Q}(\sqrt{2})]$ is 2 , so $[\mathbb{Q}(\sqrt{3}, \sqrt{2}): \mathbb{Q}(\sqrt{2})]=4$.

Using this, we can write a basis for $\mathbb{Q}(\sqrt{3}, \sqrt{2})$: we must have $1, \sqrt{2}, \sqrt{3}$, but then we must also have $\sqrt{2} \sqrt{3}=\sqrt{6}$ which is independent from the previous three, so these four elements are a basis.

Theorem 1.14. The extension K / F is finite if and only if K is generated by a finite number of algebraic elements over F, and if these elements have degrees d_{i}, then $[K: F]$ has degree $\leq \Pi d_{i}$.

Proof. If K / F is finite of degree n, let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for K over F. These are all algebraic because $[K: F]$ is finite and therefore K is generated by a finite number of algebraic elements over F. The converse and result on degree was proved above.

Corollary 1.15. Suppose α, β are algebraic over F. Then, $\alpha \pm \beta, \alpha \beta, \alpha / \beta$ (for $\beta \neq 0$) are algebraic over F.

Proof. These elements all lie in $F(\alpha, \beta)$ which is finite over F, hence they are algebraic.
Finally, note that we could extend these ideas slightly more generally:
Definition 1.16. Let $K_{1}, K_{2} \subset K$ be fields. The composite field of K_{1}, K_{2} is denoted $K_{1} K_{2}$ and is the smallest subfield of K containing both K_{1} and K_{2}. (One can similarly define the composite field of any collection of subfields of K.)

By similar arguments to those above, one can show that

$$
\left[K_{1} K_{2}: F\right]=\left[K_{1} K_{2}: K_{1}\right]\left[K_{1}: F\right]=\left[K_{1} K_{2}: K_{2}\right]\left[K_{2}: F\right] \leq\left[K_{1}: F\right]\left[K_{2}: F\right] .
$$

Note that this implies $\left[K_{i}: F\right]$ divides $\left[K_{1} K_{2}: F\right]$, so for example, if $\operatorname{gcd}\left(\left[K_{1}: F\right],\left[K_{2}: F\right]\right)=1$, we have $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right]\left[K_{2}: F\right]$.

2. 13.3: Straightedge and Compass Constructions

Finally, we say a few things about what angles and lengths and be constructed with just a straightedge and compass. Let us translate into algebraic terms: let 1 denote a fixed unit distance, so any length is $a \in \mathbb{R}$ a real number. We consider the usual $x y$-plane and view everything in this section in \mathbb{R}^{2}. We want to consider the problem of which lengths in \mathbb{R} can be obtained from a compass and straightedge knowing just this unit distance. The lengths for which this is possible are the constructible real numbers.

We are allowed to:
(1) Draw a straight line connecting any two points.
(2) Mark a point of intersection of any two lines.
(3) Draw a circle with a given radius and center.
(4) Mark a point of intersection of lines and circles or multiple circles.

Exercise 2.1. Show that, given any line L, you can (1) draw a perpendicular line through any point of L, and then (2) draw any line parallel to L. (Hint for (1): draw several circles.)

From some geometry and similar triangles, we can construct several numbers:
Example 2.2. Suppose we are given two lengths a, b. Then, we may construct $a \pm b, a b, a / b$, and \sqrt{a}. We illustrate this pictorially (using that we can draw parallel and perpendicular lines):

Fig. 1

Fig. 2
How does this relate to field extensions?
Proposition 2.3. If an element $\alpha \in \mathbb{R}$ is obtained from a field $F \subset \mathbb{R}$ by a series of compass and straightedge constructions, then $[F(\alpha): F]=2^{k}$ for some integer k.

Before the proof, some examples of applications:
Example 2.4. Is it possible, using only a straightedge and compass, to construct a cube with precisely twice the volume of a given cube?

The answer is no! If so, we would need to start with a cube with side length 1 (so volume 1), and then construct a cube with volume 2 , i.e. side length $\sqrt[3]{2}$. Because $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3 \neq 2^{k}$, this is not possible.

Example 2.5. Starting with a given angle θ, is it possible to use only a compass and straightedge to trisect this angle?

The answer is no! If any given angle θ could be constructed, then we could determine the point at distance 1 from the origin along the line in angle θ, i.e. $\cos \theta$ (the x-coordinate) and $\sin \theta$ (the y-coordinate) can be constructed. Conversely, if we know $\cos \theta$ and $\sin \theta$, then we can construct the angle θ. So, trisecting the angle is equivalent to starting with $\cos \theta$ and finding $\cos \theta / 3$. This is not always possible! There is a trig identity that says:

$$
\cos \theta=4 \cos ^{3} \theta / 3-3 \cos \theta / 3
$$

so if $\theta=60$, then $\cos \theta=1 / 2$, and letting $\beta=\cos 20$, we get

$$
4 \beta^{3}-3 \beta-1 / 2=0
$$

or

$$
8 \beta^{3}-6 \beta-1=0 .
$$

Letting $\alpha=2 \beta$, this becomes $\alpha^{3}-3 \alpha-1=0$. This is an irreducible polynomial over \mathbb{Q} (for instance, one could use the rational root theorem) so the extension $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$ but this is again not a power of 2 .

Now, let's prove the theorem:
Proof. Suppose we start with a field $F \subset \mathbb{R}$ of things we have constructed. (We know, from 1, we can construct all rational numbers, so the collection of elements that are constructible from 1 is some field larger than \mathbb{Q} in \mathbb{R}.) A straight line connecting any two points with coordinates in F has equation of the form $a x+b y-c=0$ where $a, b, c \in F$. Solving two such equations (finding the intersection point) gives solutions in F, so using only a straightedge will just produce points in F.

Using a compass, supposing we have constructed the coordinates of the center (h, k) and the radius r, we have equation $(x-h)^{2}+(y-k)^{2}=r^{2}$ where $h, k, r \in F$.

We can compute the intersection point of lines with coordinates in F, i.e. $a x+b y-c$, and solving for y and substituting into the equation of the circle, the x-coordinate of the point of intersection lies in (at worst) a quadratic extension of F, and hence so does y as it is linear in x. If we intersect two circles, $(x-h)^{2}+(y-k)^{2}=r^{2}$ and $\left(x-h^{\prime}\right)^{2}+\left(y-k^{\prime}\right)^{2}=r^{\prime 2}$ we can subtract the first from the second to get the equations $(x-h)^{2}+(y-k)^{2}=r^{2}$ and $2\left(h^{\prime}-h\right) x+2\left(k^{\prime}-k\right) y=r^{2}-h^{2}-k^{2}-r^{\prime 2}+h^{\prime 2}+k^{\prime 2}$ which is just the intersection of a circle and line, so the coordinates lie in a quadratic extension of F. Therefore, if $\alpha \in \mathbb{R}$ is obtained from elements in F by a finite sequence of straightedge and compass operations, then α is an element of an extension field K / F with $[K: F]=2^{m}$, and hence $[F(\alpha): F]=2^{k}$ for some $k \leq m$ because it is a divisor of 2^{m}.

