FEBRUARY 8 NOTES

1. 13.2: ALGEBRAIC EXTENSIONS
From last time:

Definition 1.1. Let F be a field and let K be an extension of F'. An element o € K is algebraic
over F'if a is a root of some nonzero polynomial f(z) € Flx]. If a is not algebraic over F', we
say that « is transcendental over F. The extension K/F is algebraic if every element of K is
algebraic over F.

Remark 1.2. If « is algebraic over F, then it is algebraic over any extension L of F' (because
algebraicity over F' implies it is a root of a polynomial in F[z], and F C L, so it is a root of a
polynomial in L|x]).

Proposition 1.3. Let a be algebraic over F'. Then, there is a unique monic irreducible polynomaial
ma,r(x) € Flx] which has o as a root. A polynomial f(x) € Flz]| has o as a root if and only if
Ma,r(x) divides f(z) in Flz].

This polynomial is called the minimal polynomial for a over F. If F is clear from context, it
is denoted simply by mq(z). The degree of « is defined to be the degree of mq(x).

We ended last time proving a theorem that implies:
Corollary 1.4. If K/F is finite, then it is algebraic.

Example 1.5. Let F' be a field of characteristic not equal to 2 and let K/F be any extension
with [K : F] = 2. Then, for any a € K with a ¢ F, degmq,(z) < 2. It cannot be 1 because
a ¢ F. Therefore, the minimal polynomial of o is ma(x) = 22 + bx + ¢ for some b,c € F. Also,
since F' C F(a) C K and F(«) and K are both two dimensional vector spaces over F, we have
K = F(a).

We can determine all possible elements in K by the quadratic formula: we find that

o —b+ Vb2 —A4c
=

where the symbol v/b2 — 4c denotes the root of the equation 22 — (b —4c) = 0. Let VD = /b2 — 4c.
Because a € F(v/D) by definition and we can similarly show v/D € F(a), we have F(a) = F(v/D).

Therefore, every degree 2 extension K of F is of the form F(v/D) where D € F is not a square.
These extensions are called quadratic extensions of F'.

A few more generalities on field extensions:
Theorem 1.6. Let F' C K C L be fields. Then, [L: F] =[L: K|[K : F].

Proof. Suppose first that [L : K] = m and [K : F] = n. If {oy} is a basis for L/K and {f;} is a
basis for K/F, then every element of L can be written as ) a;q; for some a; € K, but every a; € K
can be written as ) | b;;3;, so every element in L can be written as ) b;ja; 55, i.e. the elements a;[;
span the vector space L over F'. It suffices to show that they are linearly independent. If there is a
linear combination ) b;jc;3; = 0, then following the process in reserve and defining a; = > b;;5;,
we find that ) a;a; = 0, which implies that each a; = 0. This implies that 0 = a; = ) b;; 5}, so we
conclude b;; = 0 for all 4, j and hence the elements a;/3; are linearly independent. This basis has
mn elements, so we conclude that [L : F| = [L: K][K : F].
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Now, suppose something in the desired expression is infinite. Note that the previous paragraph
shows that, if [L : K] and [K : F|] are both finite, then [L : F] is finite, so if [L : F] is infinite,
either [L : K] or [K : F] is infinite. If [K : F] is infinite, as K C L, we must have [L : F| infinite.
Similarly, if [L : K] is infinite, then [L : F] is infinite. Therefore, if one side of the equation is
infinite, so is the other. O

Corollary 1.7. If L/F is finite and F' C K C L, then [K : F] divides [L : FJ.
This allows us to prove *specific things about numbers*!

Example 1.8. The element v/2 cannot be contained in any field Q(c) where Q(a)/Q has degree
3, because 2 does not divide 3. Therefore, if « is any root of an irreducible degree 3 polynomial

over Q, we cannot write /2 as a rational linear combination of 1, a, o2,

Example 1.9. Because [Q(v/2) : Q] = 6 and (v/2)® = /2, we have Q(+v/2) C Q(v/2), and by
multiplicativity of degrees, [Q(v/2) : Q(v/2)] = 3. Therefore, the minimal polynomial of v/2 over
Q(\/ﬁ) has degree 3. Because 23 — /2 is a monic polynomial of degree 3 over Q(\/i) with /2 as a
root, it must be the minimal polynomial and hence must be irreducible over Q(v/2).

Definition 1.10. An extension K/F is finitely generated if there exist {aq,...,a,} € K such that
K=F(ay,...,ap).

We can compute these field extensions ‘recursively’, i.e.
Lemma 1.11. F(«, ) = (F(a))(B).

Proof. This follows directly from minimality in the definition of these extensions. Because F(«, f3)
contains F' and «;, it contains F'(«), and because it contains F'(«) and 3, it must contain (F'(«))(3).
Conversely, (F(«))(8) contains F' and « and 8 so must contain F(«, ). Therefore, they are
equal. O

This tells us that K = F(«q,...,a,) can be constructed iteratively by first letting F1 = F(a1)
be the field generated by oy over F, and then F» = Fi(aw) the field generated by s over Fy (which
may be different than that over F!), etc to get a sequence

F=FCcFC---CF,=K

and supposing that «; is algebraic over F' of degree d;, then «; is algebraic over F; of degree at
most d;, so we obtain that

(K :F|=[F,:Fy_1]...[Fo: Fi|[F1 : Fol < dj...d,.
Example 1.12. The field Q(v/2,v/2) is just Q(v/2) since /2 is already in Q(v/2).

Example 1.13. The field Q(v/2, v/3) is an extension of Q(v/2). We know the degree of the extension
is at most 2 because v/3 is a root of 22 — 3, but we need to show that this still is irreducible over
Q(v/2). This polynomial only has degree 2, so it is reducible if and only if it has a root in Q(v/2),
which means v/3 € Q(v/2). We can show this is impossible: if v/3 = a + by/2 for rational numbers
a,b, then we get 3 = (a® + 2b%) + 2abv/2. If ab # 0, then we can solve for v/2 to conclude that
V/2 is rational, a contradiction, so we must have ab = 0. If b = 0, then v/3 = a is rational, a
contradiction. If @ = 0, then /3 = by/2, which says v/6 = 2b, or v/6 is rational, a contraction.
Thus, [Q(v3,v2) : Q(v2)] is 2, so [Q(V3,v2) : Q(vV2)] = 4.

Using this, we can write a basis for Q(v/3, \/§) we must have 1,v/2,1/3, but then we must also
have v/2v/3 = v/6 which is independent from the previous three, so these four elements are a basis.

Theorem 1.14. The extension K/F is finite if and only if K is generated by a finite number of
algebraic elements over F, and if these elements have degrees d;, then [K : F] has degree < 11d;.
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Proof. If K/F is finite of degree n, let a1,...,a, be a basis for K over F. These are all algebraic
because [K : F] is finite and therefore K is generated by a finite number of algebraic elements over
F'. The converse and result on degree was proved above. g

Corollary 1.15. Suppose «, 3 are algebraic over F'. Then, a+f, a5, a/f (for 5 # 0) are algebraic
over F'.

Proof. These elements all lie in F'(«, 3) which is finite over F', hence they are algebraic. O
Finally, note that we could extend these ideas slightly more generally:

Definition 1.16. Let K1, Ko C K be fields. The composite field of K7, K5 is denoted K7 K2 and
is the smallest subfield of K containing both K; and Kj. (One can similarly define the composite
field of any collection of subfields of K.)

By similar arguments to those above, one can show that
[KlKQ . F] = [KlKQ . Kl][Kl . F] = [KlKQ . KQ][K2 : F] S [Kl FHKQ . F]

Note that this implies [K; : F] divides [K1 K5 : F], so for example, if gcd([K; : F],[K2 : F]) =1,
we have [K1 K>y : F| = [K; : F][Ks : F).

2. 13.3: STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

Finally, we say a few things about what angles and lengths and be constructed with just a
straightedge and compass. Let us translate into algebraic terms: let 1 denote a fixed unit distance,
so any length is @ € R a real number. We consider the usual xy-plane and view everything in this
section in R%2. We want to consider the problem of which lengths in R can be obtained from a
compass and straightedge knowing just this unit distance. The lengths for which this is possible
are the constructible real numbers.

We are allowed to:

(1) Draw a straight line connecting any two points.
(2) Mark a point of intersection of any two lines.
(3) Draw a circle with a given radius and center.

(4) Mark a point of intersection of lines and circles or multiple circles.

Exercise 2.1. Show that, given any line L, you can (1) draw a perpendicular line through any
point of L, and then (2) draw any line parallel to L. (Hint for (1): draw several circles.)

From some geometry and similar triangles, we can construct several numbers:

Example 2.2. Suppose we are given two lengths a,b. Then, we may construct a £+ b, ab, a/b, and
Va. We illustrate this pictorially (using that we can draw parallel and perpendicular lines):

ab af
A |
—1— —1— Ja
ke——a— e——b——> l
- a 1= gig.2

How does this relate to field extensions?

Proposition 2.3. If an element a € R is obtained from a field F C R by a series of compass and
straightedge constructions, then [F(a) : F] = 2F for some integer k.
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Before the proof, some examples of applications:

Example 2.4. Is it possible, using only a straightedge and compass, to construct a cube with
precisely twice the volume of a given cube?

The answer is no! If so, we would need to start with a cube with side length 1 (so volume 1),
and then construct a cube with volume 2, i.e. side length /2. Because [Q(v/2) : Q] = 3 # 2¥, this
is not possible.

Example 2.5. Starting with a given angle 6, is it possible to use only a compass and straightedge
to trisect this angle?

The answer is no! If any given angle 6 could be constructed, then we could determine the point
at distance 1 from the origin along the line in angle 6, i.e. cos@ (the z-coordinate) and sin@ (the
y-coordinate) can be constructed. Conversely, if we know cosf and sinf, then we can construct
the angle 0. So, trisecting the angle is equivalent to starting with cos and finding cos§/3. This is
not always possible! There is a trig identity that says:

cos = 4cos®0/3 — 3cos0/3
so if # = 60, then cos @ = 1/2, and letting 5 = cos 20, we get
483 -38—-1/2=0
or
83% — 68 —1=0.
Letting a = 23, this becomes a® — 3 — 1 = 0. This is an irreducible polynomial over Q (for
instance, one could use the rational root theorem) so the extension [Q(«) : Q] = 3 but this is again
not a power of 2.

Now, let’s prove the theorem:

Proof. Suppose we start with a field F' C R of things we have constructed. (We know, from 1, we
can construct all rational numbers, so the collection of elements that are constructible from 1 is
some field larger than @ in R.) A straight line connecting any two points with coordinates in F
has equation of the form ax + by — ¢ = 0 where a, b, c € F. Solving two such equations (finding the
intersection point) gives solutions in F, so using only a straightedge will just produce points in F'.

Using a compass, supposing we have constructed the coordinates of the center (h,k) and the
radius r, we have equation (x — h)? + (y — k)2 = r2 where h,k,r € F.

We can compute the intersection point of lines with coordinates in F, i.e. ax+ by — ¢, and solving
for y and substituting into the equation of the circle, the x-coordinate of the point of intersection lies
in (at worst) a quadratic extension of F', and hence so does y as it is linear in z. If we intersect two
circles, (x—h)?+(y—k)? = r? and (x—h')?+(y—k')? = r"2 we can subtract the first from the second
to get the equations (x—h)%+ (y—k)2 = r2 and 2(W —h)z+2(K' —k)y = r2 —h%2 —k?> —r"2 + B2 + k2
which is just the intersection of a circle and line, so the coordinates lie in a quadratic extension
of F'. Therefore, if & € R is obtained from elements in F' by a finite sequence of straightedge and
compass operations, then « is an element of an extension field K/F with [K : F] = 2™, and hence
[F(c) : F] = 2F for some k < m because it is a divisor of 2™. O
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