## **FEBRUARY 8 NOTES**

## 1. 13.2: Algebraic Extensions

From last time:

**Definition 1.1.** Let F be a field and let K be an extension of F. An element  $\alpha \in K$  is algebraic over F if  $\alpha$  is a root of some nonzero polynomial  $f(x) \in F[x]$ . If  $\alpha$  is not algebraic over F, we say that  $\alpha$  is **transcendental** over F. The extension K/F is **algebraic** if every element of K is algebraic over F.

**Remark 1.2.** If  $\alpha$  is algebraic over F, then it is algebraic over any extension L of F (because algebraicity over F implies it is a root of a polynomial in F[x], and  $F \subset L$ , so it is a root of a polynomial in L[x]).

**Proposition 1.3.** Let  $\alpha$  be algebraic over F. Then, there is a unique monic irreducible polynomial  $m_{\alpha,F}(x) \in F[x]$  which has  $\alpha$  as a root. A polynomial  $f(x) \in F[x]$  has  $\alpha$  as a root if and only if  $m_{\alpha,F}(x)$  divides f(x) in F[x].

This polynomial is called the **minimal polynomial** for  $\alpha$  over F. If F is clear from context, it is denoted simply by  $m_{\alpha}(x)$ . The **degree** of  $\alpha$  is defined to be the degree of  $m_{\alpha}(x)$ .

We ended last time proving a theorem that implies:

**Corollary 1.4.** If K/F is finite, then it is algebraic.

**Example 1.5.** Let F be a field of characteristic not equal to 2 and let K/F be any extension with [K : F] = 2. Then, for any  $\alpha \in K$  with  $\alpha \notin F$ , deg  $m_{\alpha}(x) \leq 2$ . It cannot be 1 because  $\alpha \notin F$ . Therefore, the minimal polynomial of  $\alpha$  is  $m_{\alpha}(x) = x^2 + bx + c$  for some  $b, c \in F$ . Also, since  $F \subset F(\alpha) \subset K$  and  $F(\alpha)$  and K are both two dimensional vector spaces over F, we have  $K = F(\alpha)$ .

We can determine all possible elements in K by the quadratic formula: we find that

$$\alpha = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

where the symbol  $\sqrt{b^2 - 4c}$  denotes the root of the equation  $x^2 - (b^2 - 4c) = 0$ . Let  $\sqrt{D} = \sqrt{b^2 - 4c}$ . Because  $\alpha \in F(\sqrt{D})$  by definition and we can similarly show  $\sqrt{D} \in F(\alpha)$ , we have  $F(\alpha) = F(\sqrt{D})$ .

Therefore, every degree 2 extension K of F is of the form  $F(\sqrt{D})$  where  $D \in F$  is not a square. These extensions are called **quadratic extensions** of F.

A few more generalities on field extensions:

**Theorem 1.6.** Let  $F \subset K \subset L$  be fields. Then, [L:F] = [L:K][K:F].

Proof. Suppose first that [L:K] = m and [K:F] = n. If  $\{\alpha_i\}$  is a basis for L/K and  $\{\beta_j\}$  is a basis for K/F, then every element of L can be written as  $\sum a_i\alpha_i$  for some  $a_i \in K$ , but every  $a_i \in K$  can be written as  $\sum b_{ij}\beta_j$ , so every element in L can be written as  $\sum b_{ij}\alpha_i\beta_j$ , i.e. the elements  $\alpha_i\beta_j$  span the vector space L over F. It suffices to show that they are linearly independent. If there is a linear combination  $\sum b_{ij}\alpha_i\beta_j = 0$ , then following the process in reserve and defining  $a_i = \sum b_{ij}\beta_j$ , we find that  $\sum a_i\alpha_i = 0$ , which implies that each  $a_i = 0$ . This implies that  $0 = a_i = \sum b_{ij}\beta_j$ , so we conclude  $b_{ij} = 0$  for all i, j and hence the elements  $\alpha_i\beta_j$  are linearly independent. This basis has mn elements, so we conclude that [L:F] = [L:K][K:F].

## FEBRUARY 8 NOTES

Now, suppose something in the desired expression is infinite. Note that the previous paragraph shows that, if [L:K] and [K:F] are both finite, then [L:F] is finite, so if [L:F] is infinite, either [L:K] or [K:F] is infinite. If [K:F] is infinite, as  $K \subset L$ , we must have [L:F] infinite. Similarly, if [L:K] is infinite, then [L:F] is infinite. Therefore, if one side of the equation is infinite, so is the other.

**Corollary 1.7.** If L/F is finite and  $F \subset K \subset L$ , then [K:F] divides [L:F].

This allows us to prove \*specific things about numbers\*!

**Example 1.8.** The element  $\sqrt{2}$  cannot be contained in any field  $\mathbb{Q}(\alpha)$  where  $\mathbb{Q}(\alpha)/\mathbb{Q}$  has degree 3, because 2 does not divide 3. Therefore, if  $\alpha$  is any root of an irreducible degree 3 polynomial over  $\mathbb{Q}$ , we cannot write  $\sqrt{2}$  as a rational linear combination of  $1, \alpha, \alpha^2$ .

**Example 1.9.** Because  $[\mathbb{Q}(\sqrt[6]{2}) : \mathbb{Q}] = 6$  and  $(\sqrt[6]{2})^3 = \sqrt{2}$ , we have  $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[6]{2})$ , and by multiplicativity of degrees,  $[\mathbb{Q}(\sqrt[6]{2}) : \mathbb{Q}(\sqrt{2})] = 3$ . Therefore, the minimal polynomial of  $\sqrt[6]{2}$  over  $\mathbb{Q}(\sqrt{2})$  has degree 3. Because  $x^3 - \sqrt{2}$  is a monic polynomial of degree 3 over  $\mathbb{Q}(\sqrt{2})$  with  $\sqrt[6]{2}$  as a root, it must be the minimal polynomial and hence must be irreducible over  $\mathbb{Q}(\sqrt{2})$ .

**Definition 1.10.** An extension K/F is finitely generated if there exist  $\{\alpha_1, \ldots, \alpha_n\} \in K$  such that  $K = F(\alpha_1, \ldots, \alpha_n)$ .

We can compute these field extensions 'recursively', i.e.

**Lemma 1.11.**  $F(\alpha, \beta) = (F(\alpha))(\beta)$ .

*Proof.* This follows directly from minimality in the definition of these extensions. Because  $F(\alpha, \beta)$  contains F and  $\alpha$ , it contains  $F(\alpha)$ , and because it contains  $F(\alpha)$  and  $\beta$ , it must contain  $(F(\alpha))(\beta)$ . Conversely,  $(F(\alpha))(\beta)$  contains F and  $\alpha$  and  $\beta$  so must contain  $F(\alpha, \beta)$ . Therefore, they are equal.

This tells us that  $K = F(\alpha_1, \ldots, \alpha_n)$  can be constructed iteratively by first letting  $F_1 = F(\alpha_1)$ be the field generated by  $\alpha_1$  over F, and then  $F_2 = F_1(\alpha_2)$  the field generated by  $\alpha_2$  over  $F_1$  (which may be different than that over F!), etc to get a sequence

$$F = F_0 \subset F_1 \subset \cdots \subset F_n = K$$

and supposing that  $\alpha_i$  is algebraic over F of degree  $d_i$ , then  $\alpha_i$  is algebraic over  $F_i$  of degree at most  $d_i$ , so we obtain that

$$[K:F] = [F_n:F_{n-1}] \dots [F_2:F_1][F_1:F_0] \le d_1 \dots d_n$$

**Example 1.12.** The field  $\mathbb{Q}(\sqrt[6]{2}, \sqrt{2})$  is just  $\mathbb{Q}(\sqrt[6]{2})$  since  $\sqrt{2}$  is already in  $\mathbb{Q}(\sqrt[6]{2})$ .

**Example 1.13.** The field  $\mathbb{Q}(\sqrt{2}, \sqrt{3})$  is an extension of  $\mathbb{Q}(\sqrt{2})$ . We know the degree of the extension is at most 2 because  $\sqrt{3}$  is a root of  $x^2 - 3$ , but we need to show that this still is irreducible over  $\mathbb{Q}(\sqrt{2})$ . This polynomial only has degree 2, so it is reducible if and only if it has a root in  $\mathbb{Q}(\sqrt{2})$ , which means  $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$ . We can show this is impossible: if  $\sqrt{3} = a + b\sqrt{2}$  for rational numbers a, b, then we get  $3 = (a^2 + 2b^2) + 2ab\sqrt{2}$ . If  $ab \neq 0$ , then we can solve for  $\sqrt{2}$  to conclude that  $\sqrt{2}$  is rational, a contradiction, so we must have ab = 0. If b = 0, then  $\sqrt{3} = a$  is rational, a contradiction. If a = 0, then  $\sqrt{3} = b\sqrt{2}$ , which says  $\sqrt{6} = 2b$ , or  $\sqrt{6}$  is rational, a contraction. Thus,  $[\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}(\sqrt{2})]$  is 2, so  $[\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] = 4$ .

Using this, we can write a basis for  $\mathbb{Q}(\sqrt{3}, \sqrt{2})$ : we must have  $1, \sqrt{2}, \sqrt{3}$ , but then we must also have  $\sqrt{2}\sqrt{3} = \sqrt{6}$  which is independent from the previous three, so these four elements are a basis.

**Theorem 1.14.** The extension K/F is finite if and only if K is generated by a finite number of algebraic elements over F, and if these elements have degrees  $d_i$ , then [K : F] has degree  $\leq \Pi d_i$ .

*Proof.* If K/F is finite of degree n, let  $\alpha_1, \ldots, \alpha_n$  be a basis for K over F. These are all algebraic because [K:F] is finite and therefore K is generated by a finite number of algebraic elements over F. The converse and result on degree was proved above.

**Corollary 1.15.** Suppose  $\alpha, \beta$  are algebraic over F. Then,  $\alpha \pm \beta, \alpha\beta, \alpha/\beta$  (for  $\beta \neq 0$ ) are algebraic over F.

*Proof.* These elements all lie in  $F(\alpha, \beta)$  which is finite over F, hence they are algebraic.

Finally, note that we could extend these ideas slightly more generally:

**Definition 1.16.** Let  $K_1, K_2 \subset K$  be fields. The **composite field** of  $K_1, K_2$  is denoted  $K_1K_2$  and is the smallest subfield of K containing both  $K_1$  and  $K_2$ . (One can similarly define the composite field of any collection of subfields of K.)

By similar arguments to those above, one can show that

$$K_1K_2:F$$
] =  $[K_1K_2:K_1][K_1:F] = [K_1K_2:K_2][K_2:F] \le [K_1:F][K_2:F].$ 

Note that this implies  $[K_i : F]$  divides  $[K_1K_2 : F]$ , so for example, if  $gcd([K_1 : F], [K_2 : F]) = 1$ , we have  $[K_1K_2 : F] = [K_1 : F][K_2 : F]$ .

## 2. 13.3: Straightedge and Compass Constructions

Finally, we say a few things about what angles and lengths and be constructed with just a straightedge and compass. Let us translate into algebraic terms: let 1 denote a fixed unit distance, so any length is  $a \in \mathbb{R}$  a real number. We consider the usual xy-plane and view everything in this section in  $\mathbb{R}^2$ . We want to consider the problem of which lengths in  $\mathbb{R}$  can be obtained from a compass and straightedge knowing just this unit distance. The lengths for which this is possible are the **constructible** real numbers.

We are allowed to:

- (1) Draw a straight line connecting any two points.
- (2) Mark a point of intersection of any two lines.
- (3) Draw a circle with a given radius and center.
- (4) Mark a point of intersection of lines and circles or multiple circles.

**Exercise 2.1.** Show that, given any line L, you can (1) draw a perpendicular line through any point of L, and then (2) draw any line parallel to L. (Hint for (1): draw several circles.)

From some geometry and similar triangles, we can construct several numbers:

**Example 2.2.** Suppose we are given two lengths a, b. Then, we may construct  $a \pm b$ , ab, a/b, and  $\sqrt{a}$ . We illustrate this pictorially (using that we can draw parallel and perpendicular lines):



How does this relate to field extensions?

**Proposition 2.3.** If an element  $\alpha \in \mathbb{R}$  is obtained from a field  $F \subset \mathbb{R}$  by a series of compass and straightedge constructions, then  $[F(\alpha) : F] = 2^k$  for some integer k.

Before the proof, some examples of applications:

**Example 2.4.** Is it possible, using only a straightedge and compase, to construct a cube with precisely twice the volume of a given cube?

The answer is no! If so, we would need to start with a cube with side length 1 (so volume 1), and then construct a cube with volume 2, i.e. side length  $\sqrt[3]{2}$ . Because  $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3 \neq 2^k$ , this is not possible.

**Example 2.5.** Starting with a given angle  $\theta$ , is it possible to use only a compass and straightedge to trisect this angle?

The answer is no! If any given angle  $\theta$  could be constructed, then we could determine the point at distance 1 from the origin along the line in angle  $\theta$ , i.e.  $\cos \theta$  (the *x*-coordinate) and  $\sin \theta$  (the *y*-coordinate) can be constructed. Conversely, if we know  $\cos \theta$  and  $\sin \theta$ , then we can construct the angle  $\theta$ . So, trisecting the angle is equivalent to starting with  $\cos \theta$  and finding  $\cos \theta/3$ . This is not always possible! There is a trig identity that says:

$$\cos\theta = 4\cos^3\theta/3 - 3\cos\theta/3$$

so if  $\theta = 60$ , then  $\cos \theta = 1/2$ , and letting  $\beta = \cos 20$ , we get

$$4\beta^3 - 3\beta - 1/2 = 0$$

or

$$8\beta^3 - 6\beta - 1 = 0.$$

Letting  $\alpha = 2\beta$ , this becomes  $\alpha^3 - 3\alpha - 1 = 0$ . This is an irreducible polynomial over  $\mathbb{Q}$  (for instance, one could use the rational root theorem) so the extension  $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$  but this is again not a power of 2.

Now, let's prove the theorem:

*Proof.* Suppose we start with a field  $F \subset \mathbb{R}$  of things we have constructed. (We know, from 1, we can construct all rational numbers, so the collection of elements that are constructible from 1 is some field larger than  $\mathbb{Q}$  in  $\mathbb{R}$ .) A straight line connecting any two points with coordinates in F has equation of the form ax + by - c = 0 where  $a, b, c \in F$ . Solving two such equations (finding the intersection point) gives solutions in F, so using only a straightedge will just produce points in F.

Using a compass, supposing we have constructed the coordinates of the center (h, k) and the radius r, we have equation  $(x - h)^2 + (y - k)^2 = r^2$  where  $h, k, r \in F$ .

We can compute the intersection point of lines with coordinates in F, i.e. ax + by - c, and solving for y and substituting into the equation of the circle, the x-coordinate of the point of intersection lies in (at worst) a quadratic extension of F, and hence so does y as it is linear in x. If we intersect two circles,  $(x-h)^2 + (y-k)^2 = r^2$  and  $(x-h')^2 + (y-k')^2 = r'^2$  we can subtract the first from the second to get the equations  $(x-h)^2 + (y-k)^2 = r^2$  and  $2(h'-h)x + 2(k'-k)y = r^2 - h^2 - k^2 - r'^2 + h'^2 + k'^2$ which is just the intersection of a circle and line, so the coordinates lie in a quadratic extension of F. Therefore, if  $\alpha \in \mathbb{R}$  is obtained from elements in F by a finite sequence of straightedge and compass operations, then  $\alpha$  is an element of an extension field K/F with  $[K:F] = 2^m$ , and hence  $[F(\alpha):F] = 2^k$  for some  $k \leq m$  because it is a divisor of  $2^m$ .