FEBRUARY 6 NOTES

1. 13.1: Basic THEORY OF FIELD EXTENSIONS

Reminder from last time:

Theorem 1.1. Let F' be a field and let p(xz) € F[z] be an irreducible polynomial. Then, there exists
a field extension K of F in which p(x) has a root. We construct K as K = F[z]/(p(x)) and we
can explicitly write the elements of K: let @ =% € K. Then, the elements {1,0,6% ... 6" '} are
a basis for K as a vector space over F', so

K:{bo—i-bl@—l-'--—i-bn_lgnfl ’ b; EF}
consists of all polynomials of degree < n in 0 and K has degree n as an extension over F.

Small commentary: we can use this description to understand multiplication and inverses in K.
Suppose that p(z) = 2" +an_12" 1+ - -+a1z+ag (note that we may assume a,, = 1 by multiplying
p(z) by (a,)™1). Then, because @ is a root of p(x), 0" = —(an_10""1 + -+ 4+ a10 + ag). So, given
two elements of K, we may multiply them and replace any powers " (or higher) by this expression
in lower degree terms. Another way of writing this is to say, given two polynomials f(6) and g(6)
in K, their product is (), where f(z)g(x) = r(x) (mod p)(z) and r(x) is the remainder under
polynomial long division by p(x).

We can also understand #~! by using that p(d) = 0, i.e. 0" + ap_ 10" +--- + a10 = —ay, i.e.
(0"t +ap_ 10" 2+ --- +ay) = —ag, so we see that

0t = (—ap) (0" +an_10" 4+ ).

To find inverses of general elements () € K, you need to find another polynomial ¢~1(0) € K
such that qg—1(#) = 1; equivalently, g¢~*(z) is equal to 1 plus some multiple of p(z). This can be
done using long division, the Euclidean algorithm, ...

We ended last time with a criterion for irreducibility:
Eisenstein’s Criterion: let f(z) € Z[z] be a polynomial, f(z) = 2™ +a, 12" '+ -+ a1z + ap.
Suppose that there is some prime number p such that p | a; for each i € {0,...,n — 1}, but p?{ ag.
Then, f(x) is irreducible in Z[x] and in Q[x].

Example 1.2. The polynomial p(z) = x® —2 is irreducible over Q[z] by Eisenstein’s criterion (with
the prime equal to 2), so there is a degree three field extension

Qlz]/(z® —2) = {a+b0+cb? |63 =2, a,bceQ}.

Right now, 6 is just a symbol. However, using our previous knowledge of number systems, we
want to represent ¢ with an actual ‘number’ (e.g. § = /2 in the previous example). To do this, we
make the following definition:

Definition 1.3. Let K be an extension of F' and let «, 5, ... be a collection of elements in K. The
smallest subfield of K containing both F' and the elements «, 3, ... is called the field generated
by «,f3,..., over F and denoted by F(«,f3,...).

Note that such a smallest field exists: certainly a subfield of K containing F' and these elements
exists (namely, K), and the intersection of subfields is a subfield, so we could define F(«, f,...) to
be the intersection of all subfields containing F' and «, 3, .. ..

Definition 1.4. If K = F(«a) is generated by a single element over F, then K is a simple
extension of F and « is called a primitive element for the extension.
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Theorem 1.5. Let F be a field and let p(x) € F[z] be an irreducible polynomial. If K is any
extension of F' containing a root o of p(x), then F(«a) = Flx]/(p(z)).

Proof. Let ¢ : F[z] — F(a) C K be the homomorphism a(x) — a(«). Since p(a) = 0, p(z) € ker ¢,
and hence there is an induced homomorphism ¢ : F[z|/(p(z)) — F(«). Because F[z]/(p(x)) is a
field and this map is not zero, it must be injective and hence F'[z]/(p(z)) is isomorphic to its image.
By construction, the image is a subfield of F(«) containing « and F, but F(«) is the smallest
subfield of K with this property, so the image must be all of F'(«)) and therefore ¢ is surjective and
hence an isomorphism. O

Using this with our previous description of F[z|/(p(z)), we see that, in the previous theorem,
F(a) C K is exactly the set

F(a)={ag+aia+ -+ ap_1a" ' |a; € F} C K.
Now we use this to simplify notation. For example, above we constructed
Qlz]/(z® —2) = {a+b0+cb? |63 =2, a,bceQ}.
Let v/2 € R denote the cube root of 2. Then, the subfield Q(+/2) of R is exactly
Qlz]/(2® —2) = {a +bV2+c(V2)* | a,b,c € Q}.
We finish this section with one more theorem.

Theorem 1.6. Let ¢ : F — F' be an isomorphism of fields. Let p(x) € Flx] be an irreducible
polynomial and let p'(x) be its image by applying the map ¢. Let o be a root of p(x) in some
extension of F and B a root of p'(x) in some extension of F'. Then, there is an isomorphism
o: F(a) — F'(B) extending ¢ and mapping o to B.

Proof. By definition, F(a) 2 Fla]/(p(z)), sending o to = (similarly, F/(8) = F'la]/(#(x))). By
construction, F[z]/(p(x)) = F'[z]/(p'(z)), and composing these isomorphims gives the desired
result. O

2. 13.2: ALGEBRAIC EXTENSIONS

Definition 2.1. Let F be a field and let K be an extension of F'. An element o € K is algebraic
over F' if a is a root of some nonzero polynomial f(z) € Flx]. If a is not algebraic over F', we
say that « is transcendental over F. The extension K/F is algebraic if every element of K is
algebraic over F'.

Remark 2.2. If « is algebraic over F, then it is algebraic over any extension L of F' (because
algebraicity over F' implies it is a root of a polynomial in F[z]|, and F' C L, so it is a root of a
polynomial in L[z]).

Example 2.3. We won’t prove this now, but you may be familiar with the terminology already.
For example, 7 is transcendental over QQ because there is no polynomial with coefficients in QQ such
that 7 is a root of it (but these things are hard to prove!!). Numbers like /2 are algebraic over Q
because by definition, it is the root of 23 — 2 = 0.

Proposition 2.4. Let o be algebraic over F. Then, there is a unique monic irreducible polynomial
Mma,r(x) € Flx] which has o as a root. A polynomial f(x) € Flz]| has o as a root if and only if
Mma,r(x) divides f(z) in Flz].

This polynomial is called the minimal polynomial for a over F'. If F is clear from context, it
is denoted simply by mq(z). The degree of « is defined to be the degree of mq(x).
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Proof. Suppose g(x) € Fl[z]| is a polynomial of minimal degree with o as a root. We may
assume that g(x) is monic (by multiplying by a constant). Suppose first that g(z) was reducible:
then g(x) = a(z)b(z) for some a,b € F[z] with dega,b < degg. Then, because F C K,
0 = g(a) = a(a)b(a), but K is a field, so this implies that either a(a)) = 0 or b(«) = 0, contradicting
the minimality of the degree of g. Therefore, g(x) is a monic irreducible polynomial with « as a
root. If f(x) € F[z] is any polynomial with « as a root, then by the Euclidean Algorithm,
f(z) = q(x)g(z) + r(z) for some polynomials ¢,r € F[x] with degr < degg. However, this implies
that 0 = f(a) = q(a)g(a) + r(a) = 0+ r(a), so r(a) = 0, and « is a root of r(z). Because
degr < degg, this is possible if and only if 7 = 0, so f(z) is divisible by g(z). This proves that
g(z) divides any polynomial with « as a root, and in particular divides any other monic irreducible
polynomial with « as a root, so g(x) = mq(x) is unique. O

Corollary 2.5. By the remark and proposition, if L/F is any field extension and « is algebraic
over F, then mq, 1,(x) divides mq p(x).

Proposition 2.6. Let a € K be algebraic over F and let F(«) be the field generated by o over F'.
Then, F(a) = Flz]/(mq(x)) and [F(a) : F] = degmq(x) = dega.

Proof. This follows directly from the second-to-last theorem in the previous section. O

Example 2.7. The minimal polynomial of v/2 over Q is 2 —2: this polynomial is monic and has 2
as a root and is irreducible by Eisenstein’s criterion. Therefore, v/2 has degree 2 over Q. Similarly,
for any n > 1, {/2 has minimal polynomial 2™ — 2 over Q.

Proposition 2.8. If a € K/F with [K : F] = n, then dega < n. An element « is algebraic over
F if and only if the simple extension F(«)/F is finite.

Proof. Suppose « is an element of a finite extension K of F' with [K : F] = n. Then, the elements
1,o,02,...,a" must be linearly dependent, so there exist some elements b; € F' not all zero such
that

bo+ b+ -+ b =0,
i.e. ais the root of the nonzero polynomial by + byx + - - - + byx™ which has degree < n. Therefore,
deg o < n. Applying this to K = F(«) we see that if F'(«)/F is finite, then « is algebraic over F.
Conversely, if a is algebraic over F, then [F(«a) : F| = degm, < oo. O

Corollary 2.9. If K/F is finite, then it is algebraic.

Proof. By the previous proposition, for any a € K, degao < n so « is algebraic over F. g
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