
FEBRUARY 6 NOTES

1. 13.1: Basic Theory of Field Extensions

Reminder from last time:

Theorem 1.1. Let F be a field and let p(x) ∈ F [x] be an irreducible polynomial. Then, there exists
a field extension K of F in which p(x) has a root. We construct K as K = F [x]/(p(x)) and we
can explicitly write the elements of K: let θ = x ∈ K. Then, the elements {1, θ, θ2, . . . , θn−1} are
a basis for K as a vector space over F , so

K = {b0 + b1θ + · · ·+ bn−1θ
n−1 | bi ∈ F}

consists of all polynomials of degree < n in θ and K has degree n as an extension over F .

Small commentary: we can use this description to understand multiplication and inverses in K.
Suppose that p(x) = xn+an−1x

n−1+· · ·+a1x+a0 (note that we may assume an = 1 by multiplying
p(x) by (an)

−1). Then, because θ is a root of p(x), θn = −(an−1θ
n−1 + · · · + a1θ + a0). So, given

two elements of K, we may multiply them and replace any powers θn (or higher) by this expression
in lower degree terms. Another way of writing this is to say, given two polynomials f(θ) and g(θ)
in K, their product is r(θ), where f(x)g(x) = r(x) (mod p)(x) and r(x) is the remainder under
polynomial long division by p(x).

We can also understand θ−1 by using that p(θ) = 0, i.e. θn + an−1θ
n−1 + · · · + a1θ = −a0, i.e.

θ(θn−1 + an−1θ
n−2 + · · ·+ a1) = −a0, so we see that

θ−1 = (−a0)
−1(θn−1 + an−1θ

n−2 + · · ·+ a1).

To find inverses of general elements q(θ) ∈ K, you need to find another polynomial q−1(θ) ∈ K
such that qq−1(θ) = 1; equivalently, qq−1(x) is equal to 1 plus some multiple of p(x). This can be
done using long division, the Euclidean algorithm, ...

We ended last time with a criterion for irreducibility:
Eisenstein’s Criterion: let f(x) ∈ Z[x] be a polynomial, f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0.
Suppose that there is some prime number p such that p | ai for each i ∈ {0, . . . , n− 1}, but p2 ∤ a0.
Then, f(x) is irreducible in Z[x] and in Q[x].

Example 1.2. The polynomial p(x) = x3−2 is irreducible over Q[x] by Eisenstein’s criterion (with
the prime equal to 2), so there is a degree three field extension

Q[x]/(x3 − 2) ∼= {a+ bθ + cθ2 | θ3 = 2, a, b, c ∈ Q}.
Right now, θ is just a symbol. However, using our previous knowledge of number systems, we

want to represent θ with an actual ‘number’ (e.g. θ = 3
√
2 in the previous example). To do this, we

make the following definition:

Definition 1.3. Let K be an extension of F and let α, β, . . . be a collection of elements in K. The
smallest subfield of K containing both F and the elements α, β, . . . is called the field generated
by α, β, . . . , over F and denoted by F (α, β, . . . ).

Note that such a smallest field exists: certainly a subfield of K containing F and these elements
exists (namely, K), and the intersection of subfields is a subfield, so we could define F (α, β, . . . ) to
be the intersection of all subfields containing F and α, β, . . . .

Definition 1.4. If K = F (α) is generated by a single element over F , then K is a simple
extension of F and α is called a primitive element for the extension.
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Theorem 1.5. Let F be a field and let p(x) ∈ F [x] be an irreducible polynomial. If K is any
extension of F containing a root α of p(x), then F (α) ∼= F [x]/(p(x)).

Proof. Let ϕ : F [x] → F (α) ⊂ K be the homomorphism a(x) 7→ a(α). Since p(α) = 0, p(x) ∈ kerϕ,
and hence there is an induced homomorphism ϕ : F [x]/(p(x)) → F (α). Because F [x]/(p(x)) is a
field and this map is not zero, it must be injective and hence F [x]/(p(x)) is isomorphic to its image.
By construction, the image is a subfield of F (α) containing α and F , but F (α) is the smallest
subfield of K with this property, so the image must be all of F (α) and therefore ϕ is surjective and
hence an isomorphism. □

Using this with our previous description of F [x]/(p(x)), we see that, in the previous theorem,
F (α) ⊂ K is exactly the set

F (α) = {a0 + a1α+ · · ·+ an−1α
n−1 | ai ∈ F} ⊂ K.

Now we use this to simplify notation. For example, above we constructed

Q[x]/(x3 − 2) ∼= {a+ bθ + cθ2 | θ3 = 2, a, b, c ∈ Q}.

Let 3
√
2 ∈ R denote the cube root of 2. Then, the subfield Q( 3

√
2) of R is exactly

Q[x]/(x3 − 2) ∼= {a+ b
3
√
2 + c(

3
√
2)2 | a, b, c ∈ Q}.

We finish this section with one more theorem.

Theorem 1.6. Let ϕ : F → F ′ be an isomorphism of fields. Let p(x) ∈ F [x] be an irreducible
polynomial and let p′(x) be its image by applying the map ϕ. Let α be a root of p(x) in some
extension of F and β a root of p′(x) in some extension of F ′. Then, there is an isomorphism
σ : F (α) → F ′(β) extending ϕ and mapping α to β.

Proof. By definition, F (α) ∼= F [x]/(p(x)), sending α to x (similarly, F ′(β) ∼= F ′[x]/(p′(x))). By
construction, F [x]/(p(x)) ∼= F ′[x]/(p′(x)), and composing these isomorphims gives the desired
result. □

2. 13.2: Algebraic Extensions

Definition 2.1. Let F be a field and let K be an extension of F . An element α ∈ K is algebraic
over F if α is a root of some nonzero polynomial f(x) ∈ F [x]. If α is not algebraic over F , we
say that α is transcendental over F . The extension K/F is algebraic if every element of K is
algebraic over F .

Remark 2.2. If α is algebraic over F , then it is algebraic over any extension L of F (because
algebraicity over F implies it is a root of a polynomial in F [x], and F ⊂ L, so it is a root of a
polynomial in L[x]).

Example 2.3. We won’t prove this now, but you may be familiar with the terminology already.
For example, π is transcendental over Q because there is no polynomial with coefficients in Q such
that π is a root of it (but these things are hard to prove!!). Numbers like 3

√
2 are algebraic over Q

because by definition, it is the root of x3 − 2 = 0.

Proposition 2.4. Let α be algebraic over F . Then, there is a unique monic irreducible polynomial
mα,F (x) ∈ F [x] which has α as a root. A polynomial f(x) ∈ F [x] has α as a root if and only if
mα,F (x) divides f(x) in F [x].

This polynomial is called the minimal polynomial for α over F . If F is clear from context, it
is denoted simply by mα(x). The degree of α is defined to be the degree of mα(x).
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Proof. Suppose g(x) ∈ F [x] is a polynomial of minimal degree with α as a root. We may
assume that g(x) is monic (by multiplying by a constant). Suppose first that g(x) was reducible:
then g(x) = a(x)b(x) for some a, b ∈ F [x] with deg a, b < deg g. Then, because F ⊂ K,
0 = g(α) = a(α)b(α), but K is a field, so this implies that either a(α) = 0 or b(α) = 0, contradicting
the minimality of the degree of g. Therefore, g(x) is a monic irreducible polynomial with α as a
root. If f(x) ∈ F [x] is any polynomial with α as a root, then by the Euclidean Algorithm,
f(x) = q(x)g(x) + r(x) for some polynomials q, r ∈ F [x] with deg r < deg g. However, this implies
that 0 = f(α) = q(α)g(α) + r(α) = 0 + r(α), so r(α) = 0, and α is a root of r(x). Because
deg r < deg g, this is possible if and only if r = 0, so f(x) is divisible by g(x). This proves that
g(x) divides any polynomial with α as a root, and in particular divides any other monic irreducible
polynomial with α as a root, so g(x) = mα(x) is unique. □

Corollary 2.5. By the remark and proposition, if L/F is any field extension and α is algebraic
over F , then mα,L(x) divides mα,F (x).

Proposition 2.6. Let α ∈ K be algebraic over F and let F (α) be the field generated by α over F .
Then, F (α) ∼= F [x]/(mα(x)) and [F (α) : F ] = degmα(x) = degα.

Proof. This follows directly from the second-to-last theorem in the previous section. □

Example 2.7. The minimal polynomial of
√
2 over Q is x2−2: this polynomial is monic and has 2

as a root and is irreducible by Eisenstein’s criterion. Therefore,
√
2 has degree 2 over Q. Similarly,

for any n > 1, n
√
2 has minimal polynomial xn − 2 over Q.

Proposition 2.8. If α ∈ K/F with [K : F ] = n, then degα ≤ n. An element α is algebraic over
F if and only if the simple extension F (α)/F is finite.

Proof. Suppose α is an element of a finite extension K of F with [K : F ] = n. Then, the elements
1, α, α2, . . . , αn must be linearly dependent, so there exist some elements bi ∈ F not all zero such
that

b0 + b1α+ · · ·+ bnα
n = 0,

i.e. α is the root of the nonzero polynomial b0 + b1x+ · · ·+ bnx
n which has degree ≤ n. Therefore,

degα ≤ n. Applying this to K = F (α) we see that if F (α)/F is finite, then α is algebraic over F .
Conversely, if α is algebraic over F , then [F (α) : F ] = degmα < ∞. □

Corollary 2.9. If K/F is finite, then it is algebraic.

Proof. By the previous proposition, for any α ∈ K, degα ≤ n so α is algebraic over F . □
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