FEBRUARY 6 NOTES

1. 13.1: Basic Theory of Field Extensions

Reminder from last time:
Theorem 1.1. Let F be a field and let $p(x) \in F[x]$ be an irreducible polynomial. Then, there exists a field extension K of F in which $p(x)$ has a root. We construct K as $K=F[x] /(p(x))$ and we can explicitly write the elements of K : let $\theta=\bar{x} \in K$. Then, the elements $\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$ are a basis for K as a vector space over F, so

$$
K=\left\{b_{0}+b_{1} \theta+\cdots+b_{n-1} \theta^{n-1} \mid b_{i} \in F\right\}
$$

consists of all polynomials of degree $<n$ in θ and K has degree n as an extension over F.
Small commentary: we can use this description to understand multiplication and inverses in K. Suppose that $p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ (note that we may assume $a_{n}=1$ by multiplying $p(x)$ by $\left.\left(a_{n}\right)^{-1}\right)$. Then, because θ is a root of $p(x), \theta^{n}=-\left(a_{n-1} \theta^{n-1}+\cdots+a_{1} \theta+a_{0}\right)$. So, given two elements of K, we may multiply them and replace any powers θ^{n} (or higher) by this expression in lower degree terms. Another way of writing this is to say, given two polynomials $f(\theta)$ and $g(\theta)$ in K, their product is $r(\theta)$, where $f(x) g(x)=r(x)(\bmod p)(x)$ and $r(x)$ is the remainder under polynomial long division by $p(x)$.

We can also understand θ^{-1} by using that $p(\theta)=0$, i.e. $\theta^{n}+a_{n-1} \theta^{n-1}+\cdots+a_{1} \theta=-a_{0}$, i.e. $\theta\left(\theta^{n-1}+a_{n-1} \theta^{n-2}+\cdots+a_{1}\right)=-a_{0}$, so we see that

$$
\theta^{-1}=\left(-a_{0}\right)^{-1}\left(\theta^{n-1}+a_{n-1} \theta^{n-2}+\cdots+a_{1}\right) .
$$

To find inverses of general elements $q(\theta) \in K$, you need to find another polynomial $q^{-1}(\theta) \in K$ such that $q q^{-1}(\theta)=1$; equivalently, $q q^{-1}(x)$ is equal to 1 plus some multiple of $p(x)$. This can be done using long division, the Euclidean algorithm, ...

We ended last time with a criterion for irreducibility:
Eisenstein's Criterion: let $f(x) \in \mathbb{Z}[x]$ be a polynomial, $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Suppose that there is some prime number p such that $p \mid a_{i}$ for each $i \in\{0, \ldots, n-1\}$, but $p^{2} \nmid a_{0}$. Then, $f(x)$ is irreducible in $\mathbb{Z}[x]$ and in $\mathbb{Q}[x]$.
Example 1.2. The polynomial $p(x)=x^{3}-2$ is irreducible over $\mathbb{Q}[x]$ by Eisenstein's criterion (with the prime equal to 2), so there is a degree three field extension

$$
\mathbb{Q}[x] /\left(x^{3}-2\right) \cong\left\{a+b \theta+c \theta^{2} \mid \theta^{3}=2, \quad a, b, c \in \mathbb{Q}\right\} .
$$

Right now, θ is just a symbol. However, using our previous knowledge of number systems, we want to represent θ with an actual 'number' (e.g. $\theta=\sqrt[3]{2}$ in the previous example). To do this, we make the following definition:
Definition 1.3. Let K be an extension of F and let α, β, \ldots be a collection of elements in K. The smallest subfield of K containing both F and the elements α, β, \ldots is called the field generated by α, β, \ldots, over F and denoted by $F(\alpha, \beta, \ldots)$.

Note that such a smallest field exists: certainly a subfield of K containing F and these elements exists (namely, K), and the intersection of subfields is a subfield, so we could define $F(\alpha, \beta, \ldots)$ to be the intersection of all subfields containing F and α, β, \ldots

Definition 1.4. If $K=F(\alpha)$ is generated by a single element over F, then K is a simple extension of F and α is called a primitive element for the extension.

Theorem 1.5. Let F be a field and let $p(x) \in F[x]$ be an irreducible polynomial. If K is any extension of F containing a root α of $p(x)$, then $F(\alpha) \cong F[x] /(p(x))$.

Proof. Let $\phi: F[x] \rightarrow F(\alpha) \subset K$ be the homomorphism $a(x) \mapsto a(\alpha)$. Since $p(\alpha)=0, p(x) \in \operatorname{ker} \phi$, and hence there is an induced homomorphism $\phi: F[x] /(p(x)) \rightarrow F(\alpha)$. Because $F[x] /(p(x))$ is a field and this map is not zero, it must be injective and hence $F[x] /(p(x))$ is isomorphic to its image. By construction, the image is a subfield of $F(\alpha)$ containing α and F, but $F(\alpha)$ is the smallest subfield of K with this property, so the image must be all of $F(\alpha)$ and therefore ϕ is surjective and hence an isomorphism.

Using this with our previous description of $F[x] /(p(x))$, we see that, in the previous theorem, $F(\alpha) \subset K$ is exactly the set

$$
F(\alpha)=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1} \mid a_{i} \in F\right\} \subset K .
$$

Now we use this to simplify notation. For example, above we constructed

$$
\mathbb{Q}[x] /\left(x^{3}-2\right) \cong\left\{a+b \theta+c \theta^{2} \mid \theta^{3}=2, \quad a, b, c \in \mathbb{Q}\right\}
$$

Let $\sqrt[3]{2} \in \mathbb{R}$ denote the cube root of 2 . Then, the subfield $\mathbb{Q}(\sqrt[3]{2})$ of \mathbb{R} is exactly

$$
\mathbb{Q}[x] /\left(x^{3}-2\right) \cong\left\{a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \mid a, b, c \in \mathbb{Q}\right\}
$$

We finish this section with one more theorem.
Theorem 1.6. Let $\phi: F \rightarrow F^{\prime}$ be an isomorphism of fields. Let $p(x) \in F[x]$ be an irreducible polynomial and let $p^{\prime}(x)$ be its image by applying the map ϕ. Let α be a root of $p(x)$ in some extension of F and β a root of $p^{\prime}(x)$ in some extension of F^{\prime}. Then, there is an isomorphism $\sigma: F(\alpha) \rightarrow F^{\prime}(\beta)$ extending ϕ and mapping α to β.

Proof. By definition, $F(\alpha) \cong F[x] /(p(x))$, sending α to x (similarly, $F^{\prime}(\beta) \cong F^{\prime}[x] /\left(p^{\prime}(x)\right)$). By construction, $F[x] /(p(x)) \cong F^{\prime}[x] /\left(p^{\prime}(x)\right)$, and composing these isomorphims gives the desired result.

2. 13.2: Algebraic Extensions

Definition 2.1. Let F be a field and let K be an extension of F. An element $\alpha \in K$ is algebraic over F if α is a root of some nonzero polynomial $f(x) \in F[x]$. If α is not algebraic over F, we say that α is transcendental over F. The extension K / F is algebraic if every element of K is algebraic over F.

Remark 2.2. If α is algebraic over F, then it is algebraic over any extension L of F (because algebraicity over F implies it is a root of a polynomial in $F[x]$, and $F \subset L$, so it is a root of a polynomial in $L[x]$).

Example 2.3. We won't prove this now, but you may be familiar with the terminology already. For example, π is transcendental over \mathbb{Q} because there is no polynomial with coefficients in \mathbb{Q} such that π is a root of it (but these things are hard to prove!!). Numbers like $\sqrt[3]{2}$ are algebraic over \mathbb{Q} because by definition, it is the root of $x^{3}-2=0$.

Proposition 2.4. Let α be algebraic over F. Then, there is a unique monic irreducible polynomial $m_{\alpha, F}(x) \in F[x]$ which has α as a root. A polynomial $f(x) \in F[x]$ has α as a root if and only if $m_{\alpha, F}(x)$ divides $f(x)$ in $F[x]$.

This polynomial is called the minimal polynomial for α over F. If F is clear from context, it is denoted simply by $m_{\alpha}(x)$. The degree of α is defined to be the degree of $m_{\alpha}(x)$.

Proof. Suppose $g(x) \in F[x]$ is a polynomial of minimal degree with α as a root. We may assume that $g(x)$ is monic (by multiplying by a constant). Suppose first that $g(x)$ was reducible: then $g(x)=a(x) b(x)$ for some $a, b \in F[x]$ with $\operatorname{deg} a, b<\operatorname{deg} g$. Then, because $F \subset K$, $0=g(\alpha)=a(\alpha) b(\alpha)$, but K is a field, so this implies that either $a(\alpha)=0$ or $b(\alpha)=0$, contradicting the minimality of the degree of g. Therefore, $g(x)$ is a monic irreducible polynomial with α as a root. If $f(x) \in F[x]$ is any polynomial with α as a root, then by the Euclidean Algorithm, $f(x)=q(x) g(x)+r(x)$ for some polynomials $q, r \in F[x]$ with $\operatorname{deg} r<\operatorname{deg} g$. However, this implies that $0=f(\alpha)=q(\alpha) g(\alpha)+r(\alpha)=0+r(\alpha)$, so $r(\alpha)=0$, and α is a root of $r(x)$. Because $\operatorname{deg} r<\operatorname{deg} g$, this is possible if and only if $r=0$, so $f(x)$ is divisible by $g(x)$. This proves that $g(x)$ divides any polynomial with α as a root, and in particular divides any other monic irreducible polynomial with α as a root, so $g(x)=m_{\alpha}(x)$ is unique.
Corollary 2.5. By the remark and proposition, if L / F is any field extension and α is algebraic over F, then $m_{\alpha, L}(x)$ divides $m_{\alpha, F}(x)$.

Proposition 2.6. Let $\alpha \in K$ be algebraic over F and let $F(\alpha)$ be the field generated by α over F. Then, $F(\alpha) \cong F[x] /\left(m_{\alpha}(x)\right)$ and $[F(\alpha): F]=\operatorname{deg} m_{\alpha}(x)=\operatorname{deg} \alpha$.
Proof. This follows directly from the second-to-last theorem in the previous section.
Example 2.7. The minimal polynomial of $\sqrt{2}$ over \mathbb{Q} is $x^{2}-2$: this polynomial is monic and has 2 as a root and is irreducible by Eisenstein's criterion. Therefore, $\sqrt{2}$ has degree 2 over \mathbb{Q}. Similarly, for any $n>1, \sqrt[n]{2}$ has minimal polynomial $x^{n}-2$ over \mathbb{Q}.

Proposition 2.8. If $\alpha \in K / F$ with $[K: F]=n$, then $\operatorname{deg} \alpha \leq n$. An element α is algebraic over F if and only if the simple extension $F(\alpha) / F$ is finite.
Proof. Suppose α is an element of a finite extension K of F with $[K: F]=n$. Then, the elements $1, \alpha, \alpha^{2}, \ldots, \alpha^{n}$ must be linearly dependent, so there exist some elements $b_{i} \in F$ not all zero such that

$$
b_{0}+b_{1} \alpha+\cdots+b_{n} \alpha^{n}=0,
$$

i.e. α is the root of the nonzero polynomial $b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ which has degree $\leq n$. Therefore, $\operatorname{deg} \alpha \leq n$. Applying this to $K=F(\alpha)$ we see that if $F(\alpha) / F$ is finite, then α is algebraic over F. Conversely, if α is algebraic over F, then $[F(\alpha): F]=\operatorname{deg} m_{\alpha}<\infty$.
Corollary 2.9. If K / F is finite, then it is algebraic.
Proof. By the previous proposition, for any $\alpha \in K$, $\operatorname{deg} \alpha \leq n$ so α is algebraic over F.

