FEBRUAY 1 NOTES

1. 13.1: Basic Theory of Field Extensions

Definition 1.1. A field F is a commutative ring with identity in which every nonzero element has an inverse. We denote the identity by 1_{F} or 1 if F is clear from context.

The characteristic of a field F, denoted $\operatorname{char}(F)$ is the smallest positive integer n such that $n\left(1_{F}\right)=1_{F}+1_{F}+\cdots+1_{F}$ (n times) is equal to 0 . If no such n exists, we define $\operatorname{char}(F)=0$.

Observe that $\left(n \cdot 1_{F}\right)+\left(m \cdot 1_{F}\right)=(n+m) \cdot 1_{F}$ and $\left(n \cdot 1_{F}\right)\left(m \cdot 1_{F}\right)=(n m) \cdot 1_{F}$. The second statement implies that the characterstic of any field, if not zero, must be prime: if $n=a b$ is composite and $n \cdot 1_{F}=0$, then $\left(a \cdot 1_{F}\right)\left(b \cdot 1_{F}\right)=0$ and as F is an integral domain, one of these terms must be 0 . Therefore, the smallest positive integer such that $n \cdot 1_{F}=0$ must be prime. Also, if $\operatorname{char}(F)=p$, then $p \cdot 1_{F}=0$, so for any $a \in F, p \cdot a=p \cdot\left(1_{F} a\right)=\left(p \cdot 1_{F}\right) a=0$, so $a+a+\cdots+a=0$.

Therefore, we have just proven the following:
Proposition 1.2. For any field F, $\operatorname{char}(F)$ is either 0 or a prime p. If $\operatorname{char}(F)=p$, then for any $a \in F, p \cdot a=0$.
Example 1.3. We have $\operatorname{char}(\mathbb{Q})=\operatorname{char}(\mathbb{R})=0$. The finite field $\mathbb{F}_{p}:=\mathbb{Z}_{p}$ has $\operatorname{char}\left(\mathbb{F}_{p}\right)=p$. The field of rational functions with coefficients in \mathbb{F}_{p} has $\operatorname{char}\left(\mathbb{F}_{p}(x)\right)=p$.

Defining $(-n) \cdot 1_{F}=-\left(n \cdot 1_{F}\right)$ and $0 \cdot 1_{F}=0$, we have a ring homomorphism $\phi: \mathbb{Z} \rightarrow F$ for any field sending $n \mapsto n \cdot 1_{F}$. The kernel of this map is clearly $\operatorname{ker} \phi=\operatorname{char}(F) \mathbb{Z}=\langle\operatorname{char}(F)\rangle$. By the First Isomorphism Theorem, this implies that there is an injection of $\mathbb{Z}($ if $\operatorname{char}(F)=0)$ or $\mathbb{Z} / p \mathbb{Z}$ (if $\operatorname{char}(F)=p$) into F. Since F is a field, it must contain the field of fractions of this subring, i.e. F contains \mathbb{Q} if $\operatorname{char}(F)=0$, and F contains \mathbb{F}_{p} if $\operatorname{char}(F)=p$. By construction, this is the smallest subfield of F containing 1_{F}.
Definition 1.4. The prime subfield of a field F is the smallest subfield of F containing 1_{F} (sometimes referred to as the subfield generated by 1_{F}). It is isomorphic to \mathbb{Q} or \mathbb{F}_{p}.
Example 1.5. The prime subfield of \mathbb{Q} and \mathbb{R} is \mathbb{Q}. The prime subfield of $\mathbb{F}_{p}(x)$ is \mathbb{F}_{p}.
Definition 1.6. If K is a field containing a subfield F, then K is an extension of F, denoted K / F (read ' K over F '). Every field is an extension of its prime subfield.

Note that, if K is an extension of F, then K is naturally an F-module by multiplication in K. Modules over fields are the same as vector spaces over fields, so any field extension K of F is a vector space over F.

Definition 1.7. The degree (or index) of a field extension K / F is $[K: F]=\operatorname{dim}_{F} K$, the dimension of the vector space K over $F . K$ is said to be a finite extension of F if $[K: F]$ is finite and infinite otherwise.
Example 1.8. \mathbb{C} contains \mathbb{R}, so \mathbb{C} is an extension of \mathbb{R}. By construction, \mathbb{C} is a 2-dimensional vector space over \mathbb{R} with basis $\{1, i\}$ (i.e. every element in \mathbb{C} can be written as $a \cdot 1+b \cdot i$ for $a, b \in \mathbb{R})$, so $[\mathbb{C}: \mathbb{R}]=2$.

We could consider the previous example in 'reverse': there is a polynomial over \mathbb{R}, namely $x^{2}+1=0$, that has no solution in \mathbb{R}, and \mathbb{C} is an extension of \mathbb{R} in which the polynomial $x^{2}+1$ has a root. This type of extension will be the focus of the first part of this chapter. Namely: if $p(x) \in F[x]$, does there exist an extension K of F containing a root of $p(x)$? containing all roots of $p(x)$? is the extension unique? etc!

Theorem 1.9. Let F be a field and let $p(x) \in F[x]$ be an irreducible polynomial. Then, there exists a field extension K of F in which $p(x)$ has a root.

Proof. Define $K=F[x] /(p(x))$, and recall that, if F is a field, $F[x]$ is a Euclidean domain (via polynomial long division) and hence a PID. Therefore, because $p(x)$ is irreducible (and hence prime) so ($p(x)$) is maximal. Therefore, $K=F[x] /(p(x))$ is a field. Via the canonical projection map $F[x] \rightarrow F[x] /(p(x))$ restricted to F, there is a homomorphism $\phi: F \rightarrow K$. This sends $1_{F} \rightarrow 1_{K}$ by construction, which implies that $\phi: F \rightarrow \phi(F)$ is an isomorphism (exercise: if $\phi: F \rightarrow K$ is any field homomorphism, it is either identically 0 or injective). Therefore, $F \cong \phi(F) \subset K$ so K is an extension of F. Furthermore, let \bar{x} be the image of x in the quotient $K=F[x] /(p(x))$. We have $p(\bar{x})=\overline{p(x)}=p(x)(\bmod p)(x)=0$, so $p(\bar{x})=0$ and $\bar{x} \in K$, so therefore p has a root in K.

We can actually write the elements of K very explicitly:
Theorem 1.10. Let $p(x) \in F[x]$ be an irreducible polynomial of degree n and let $K=F[x] /(p(x))$. Let $\theta=\bar{x} \in K$. Then, the elements $\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$ are a basis for K as a vector space over F, so

$$
K=\left\{a_{0}+a_{1} \theta+\cdots+a_{n-1} \theta^{n-1} \mid a_{i} \in F\right\}
$$

consists of all polynomials of degree $<n$ in θ and K has degree n as an extension over F.
Proof. Let $a(x)$ be any polynomial in $F[x]$. Then, by polynomial long division, we can write

$$
a(x)=q(x) p(x)+r(x)
$$

where $\operatorname{deg} r(x)<n$, and $a(x)=r(x)(\bmod p)(x)$, every coset (or 'residue class') in the quotient field $F[x] /(p(x))$ has a representative of degree $<n$. Therefore, $\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$ spans K as a vector space over F, so we just need to verify their linear independence. Consider a linear combination

$$
b_{0}+b_{1} \theta+\cdots+b_{n-1} \theta^{n-1}=0
$$

where $b_{i} \in F$. This implies that $b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}=0(\bmod p)(x)$, i.e. $b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}$ is divisible by $p(x)$. Because $\operatorname{deg} p(x)=n$, this is possible if and only if $b_{i}=0$ for all i, i.e. the only linear combination

$$
b_{0}+b_{1} \theta+\cdots+b_{n-1} \theta^{n-1}=0
$$

is trivial. Therefore, $\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$ is linearly independent and hence a basis for K.
From here, we can also explicitly understand addition and multiplication in K. Addition is defined component-wise, and to multiply, suppose that $p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ (note that we may assume $a_{n}=1$ by multiplying $p(x)$ by $\left.\left(a_{n}\right)^{-1}\right)$. Then, because θ is a root of $p(x)$, $\theta^{n}=-\left(a_{n-1} \theta^{n-1}+\cdots+a_{1} \theta+a_{0}\right)$. So, given two elements of K, we may multiply them and replace any powers θ^{n} (or higher) by this expression in lower degree terms. Another way of writing this is to say, given two polynomials $f(\theta)$ and $g(\theta)$ in K, their product is $r(\theta)$, where $f(x) g(x)=r(x)$ $(\bmod p)(x)$ and $r(x)$ is the remainder under polynomial long division by $p(x)$.

We can also easily understand θ^{-1} by using that $p(\theta)=0$, i.e. $\theta^{n}+a_{n-1} \theta^{n-1}+\cdots+a_{1} \theta=-a_{0}$, i.e. $\theta\left(\theta^{n-1}+a_{n-1} \theta^{n-2}+\cdots+a_{1}\right)=-a_{0}$, so we see that

$$
\theta^{-1}=\left(-a_{0}\right)^{-1}\left(\theta^{n-1}+a_{n-1} \theta^{n-2}+\cdots+a_{1}\right) .
$$

In general, finding inverses can be done using the Euclidean algorithm.
Example 1.11. If $F=\mathbb{R}$ and $p(x)=x^{2}+1$, we obtain $K=\mathbb{R}[x] /\left(x^{2}+1\right)$ an extension of degree 2. Exercise: show that, for $a+b \theta$ and $c+d \theta$ in $K,(a+b \theta)(c+d \theta)=(a c-b d)+(a d+b c) \theta$.

We can identify this field with \mathbb{C} : from the exercise, the map

$$
\phi: \mathbb{R}[x] /\left(x^{2}+1\right) \rightarrow \mathbb{C}
$$

given by $\phi(a+b x)=a+b i$ is a homomorphism, and it is clearly bijective, hence an isomorphism.

We could do the same construction with $F=\mathbb{Q}$, and get a field which we denote $\mathbb{Q}(i)$. This is a degree 2 extension of \mathbb{Q} containing i, and a subfield of \mathbb{C} (but not all of $\mathbb{C}!$).

This construction only applies for irreducible polynomials. Recall (or discover?) the following test for irreducibility of polynomials over \mathbb{Q} (see Chapter 9.4, Corollary 14):
Eisenstein's Criterion: let $f(x) \in \mathbb{Z}[x]$ be a polynomial, $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Suppose that there is some prime number p such that $p \mid a_{i}$ for each $i \in\{0, \ldots, n-1\}$, but $p^{2} \nmid a_{0}$. Then, $f(x)$ is irreducible in $\mathbb{Z}[x]$ and in $\mathbb{Q}[x]$.
Example 1.12. The polynomial $p(x)=x^{3}-2$ is irreducible over $\mathbb{Q}[x]$ by Eisenstein's criterion (with the prime equal to 2), so there is a degree three field extension

$$
\mathbb{Q}[x] /\left(x^{3}-2\right) \cong\left\{a+b \theta+c \theta^{2} \mid \theta^{3}=2, \quad a, b, c \in \mathbb{Q}\right\} .
$$

