
FEBRUAY 1 NOTES

1. 13.1: Basic Theory of Field Extensions

Definition 1.1. A field F is a commutative ring with identity in which every nonzero element has
an inverse. We denote the identity by 1F or 1 if F is clear from context.

The characteristic of a field F , denoted char(F ) is the smallest positive integer n such that
n(1F ) = 1F + 1F + · · ·+ 1F (n times) is equal to 0. If no such n exists, we define char(F ) = 0.

Observe that (n · 1F ) + (m · 1F ) = (n +m) · 1F and (n · 1F )(m · 1F ) = (nm) · 1F . The second
statement implies that the characterstic of any field, if not zero, must be prime: if n = ab is
composite and n · 1F = 0, then (a · 1F )(b · 1F ) = 0 and as F is an integral domain, one of these
terms must be 0. Therefore, the smallest positive integer such that n ·1F = 0 must be prime. Also,
if char(F ) = p, then p·1F = 0, so for any a ∈ F , p·a = p·(1Fa) = (p·1F )a = 0, so a+a+· · ·+a = 0.

Therefore, we have just proven the following:

Proposition 1.2. For any field F , char(F ) is either 0 or a prime p. If char(F ) = p, then for any
a ∈ F , p · a = 0.

Example 1.3. We have char(Q) = char(R) = 0. The finite field Fp := Zp has char(Fp) = p. The
field of rational functions with coefficients in Fp has char(Fp(x)) = p.

Defining (−n) · 1F = −(n · 1F ) and 0 · 1F = 0, we have a ring homomorphism ϕ : Z → F for any
field sending n 7→ n · 1F . The kernel of this map is clearly kerϕ = char(F )Z = ⟨char(F )⟩. By the
First Isomorphism Theorem, this implies that there is an injection of Z (if char(F ) = 0) or Z/pZ
(if char(F ) = p) into F . Since F is a field, it must contain the field of fractions of this subring,
i.e. F contains Q if char(F ) = 0, and F contains Fp if char(F ) = p. By construction, this is the
smallest subfield of F containing 1F .

Definition 1.4. The prime subfield of a field F is the smallest subfield of F containing 1F
(sometimes referred to as the subfield generated by 1F ). It is isomorphic to Q or Fp.

Example 1.5. The prime subfield of Q and R is Q. The prime subfield of Fp(x) is Fp.

Definition 1.6. If K is a field containing a subfield F , then K is an extension of F , denoted
K/F (read ‘K over F ’). Every field is an extension of its prime subfield.

Note that, if K is an extension of F , then K is naturally an F -module by multiplication in K.
Modules over fields are the same as vector spaces over fields, so any field extension K of F is a
vector space over F .

Definition 1.7. The degree (or index) of a field extension K/F is [K : F ] = dimF K, the
dimension of the vector space K over F . K is said to be a finite extension of F if [K : F ] is finite
and infinite otherwise.

Example 1.8. C contains R, so C is an extension of R. By construction, C is a 2-dimensional
vector space over R with basis {1, i} (i.e. every element in C can be written as a · 1 + b · i for
a, b ∈ R), so [C : R] = 2.

We could consider the previous example in ‘reverse’: there is a polynomial over R, namely
x2 + 1 = 0, that has no solution in R, and C is an extension of R in which the polynomial x2 + 1
has a root. This type of extension will be the focus of the first part of this chapter. Namely: if
p(x) ∈ F [x], does there exist an extension K of F containing a root of p(x)? containing all roots
of p(x)? is the extension unique? etc!
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Theorem 1.9. Let F be a field and let p(x) ∈ F [x] be an irreducible polynomial. Then, there exists
a field extension K of F in which p(x) has a root.

Proof. Define K = F [x]/(p(x)), and recall that, if F is a field, F [x] is a Euclidean domain (via
polynomial long division) and hence a PID. Therefore, because p(x) is irreducible (and hence
prime) so (p(x)) is maximal. Therefore, K = F [x]/(p(x)) is a field. Via the canonical projection
map F [x] → F [x]/(p(x)) restricted to F , there is a homomorphism ϕ : F → K. This sends 1F → 1K
by construction, which implies that ϕ : F → ϕ(F ) is an isomorphism (exercise: if ϕ : F → K is any
field homomorphism, it is either identically 0 or injective). Therefore, F ∼= ϕ(F ) ⊂ K so K is an
extension of F . Furthermore, let x be the image of x in the quotient K = F [x]/(p(x)). We have

p(x) = p(x) = p(x) (mod p)(x) = 0, so p(x) = 0 and x ∈ K, so therefore p has a root in K. □

We can actually write the elements of K very explicitly:

Theorem 1.10. Let p(x) ∈ F [x] be an irreducible polynomial of degree n and let K = F [x]/(p(x)).
Let θ = x ∈ K. Then, the elements {1, θ, θ2, . . . , θn−1} are a basis for K as a vector space over F ,
so

K = {a0 + a1θ + · · ·+ an−1θ
n−1 | ai ∈ F}

consists of all polynomials of degree < n in θ and K has degree n as an extension over F .

Proof. Let a(x) be any polynomial in F [x]. Then, by polynomial long division, we can write

a(x) = q(x)p(x) + r(x)

where deg r(x) < n, and a(x) = r(x) (mod p)(x), every coset (or ‘residue class’) in the quotient field
F [x]/(p(x)) has a representative of degree < n. Therefore, {1, θ, θ2, . . . , θn−1} spans K as a vector
space over F , so we just need to verify their linear independence. Consider a linear combination

b0 + b1θ + · · ·+ bn−1θ
n−1 = 0

where bi ∈ F . This implies that b0+b1x+· · ·+bn−1x
n−1 = 0 (mod p)(x), i.e. b0+b1x+· · ·+bn−1x

n−1

is divisible by p(x). Because deg p(x) = n, this is possible if and only if bi = 0 for all i, i.e. the
only linear combination

b0 + b1θ + · · ·+ bn−1θ
n−1 = 0

is trivial. Therefore, {1, θ, θ2, . . . , θn−1} is linearly independent and hence a basis for K. □

From here, we can also explicitly understand addition and multiplication in K. Addition is
defined component-wise, and to multiply, suppose that p(x) = xn+an−1x

n−1+ · · ·+a1x+a0 (note
that we may assume an = 1 by multiplying p(x) by (an)

−1). Then, because θ is a root of p(x),
θn = −(an−1θ

n−1+ · · ·+a1θ+a0). So, given two elements of K, we may multiply them and replace
any powers θn (or higher) by this expression in lower degree terms. Another way of writing this
is to say, given two polynomials f(θ) and g(θ) in K, their product is r(θ), where f(x)g(x) = r(x)
(mod p)(x) and r(x) is the remainder under polynomial long division by p(x).

We can also easily understand θ−1 by using that p(θ) = 0, i.e. θn + an−1θ
n−1 + · · ·+ a1θ = −a0,

i.e. θ(θn−1 + an−1θ
n−2 + · · ·+ a1) = −a0, so we see that

θ−1 = (−a0)
−1(θn−1 + an−1θ

n−2 + · · ·+ a1).

In general, finding inverses can be done using the Euclidean algorithm.

Example 1.11. If F = R and p(x) = x2 + 1, we obtain K = R[x]/(x2 + 1) an extension of degree
2. Exercise: show that, for a+ bθ and c+ dθ in K, (a+ bθ)(c+ dθ) = (ac− bd) + (ad+ bc)θ.

We can identify this field with C: from the exercise, the map

ϕ : R[x]/(x2 + 1) → C
given by ϕ(a+ bx) = a+ bi is a homomorphism, and it is clearly bijective, hence an isomorphism.
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We could do the same construction with F = Q, and get a field which we denote Q(i). This is a
degree 2 extension of Q containing i, and a subfield of C (but not all of C!).

This construction only applies for irreducible polynomials. Recall (or discover?) the following
test for irreducibility of polynomials over Q (see Chapter 9.4, Corollary 14):
Eisenstein’s Criterion: let f(x) ∈ Z[x] be a polynomial, f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0.
Suppose that there is some prime number p such that p | ai for each i ∈ {0, . . . , n− 1}, but p2 ∤ a0.
Then, f(x) is irreducible in Z[x] and in Q[x].

Example 1.12. The polynomial p(x) = x3 − 2 is irreducible over Q[x] by Eisenstein’s criterion
(with the prime equal to 2), so there is a degree three field extension

Q[x]/(x3 − 2) ∼= {a+ bθ + cθ2 | θ3 = 2, a, b, c ∈ Q}.
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