
DECEMBER 7 NOTES

1. 10.4: (One more example of) Tensor Products

Example 1.1. Let R be a ring and I an ideal and N an R-module. There is an N -submodule IN
defined to be all finite sums of products of elements in I with elements in N .

In this case, R/I ⊗R N ∼= N/IN . Because 1 ∈ R/I (the image of 1 in R) generates R/I as
an R-module, the elements 1 ⊗ n generate R/I ⊗R N . There is an R-module homomorphism
N → R/I ⊗R N sending n 7→ 1 ⊗ n, which is surjective because the elements 1 ⊗ n generate the
tensor product. The kernel must contain IN because, if aini ∈ IN (ai ∈ I, ni ∈ N), this maps to
1⊗ aini = ai ⊗ni = 0 because ai = 0 ∈ R/I. This gives a surjective map N/IN → R/I ⊗RN , and
we must show it is an isomorphism. But this follows because it has an inverse: R/I⊗RN → N/IN
given by (r, n) 7→ rn can be checked to be the inverse of this map.

A few other properties of the tensor product:

Theorem 1.2. If ϕ :M →M ′ and ψ : N → N ′ are R-module homomorphisms, then

ϕ⊗ ψ :M ⊗R N →M ′ ⊗R N
′

given by (ϕ⊗ ψ)(m⊗ n) = ϕ(m)⊗ ϕ(n) is an R-module homomorphism.

Theorem 1.3. If M,N,L are R-modules, then (M ⊗R N)⊗R L ∼=M ⊗R (N ⊗R L).

Theorem 1.4. Let M,M ′ and N,N ′ be R-modules. Then,

(M ⊕M ′)⊗R N ∼= (M ⊗R N)⊕ (M ′ ⊗R N)

M ⊗R (N ⊕N ′) ∼= (M ⊗R N)⊕ (M ⊗R N
′).

Corollary 1.5. If S is a ring and f : R → S a homomorphism so that S is an R-module via
rs = f(r)s, then S⊗R

∼= R and S ⊗R R
n ∼= Sn.

Corollary 1.6. For a ring R, Rs ⊗R Rt ∼= Rst. This says that the tensor product of two free
modules of finite rank is again free.

2. 11.5: Tensor Algebras, Symmetric and Exterior Algebras

We will continue to assume that R is a commutative ring with identity.

Definition 2.1. For each k ≥ 1, let T k(M) =M⊗RM⊗R · · ·⊗RM (with k M ’s). Let T 0(M) = 0.
Define

T (M) = R⊕ T 1(M)⊕ T 2(M)⊕ · · · = ⊕∞
k=0T

k(M).

T (M) is called the tensor algebra of M . The elements of the summand T k(M) are called
k-tensors.

This is called an algebra because it is an R-algebra (remember, this is a ring that is also an
R-module). It is an R-module because it is a sum of R-modules, and hence it is an abelian group,
and it becomes a ring when we define multiplication to be

(m1 ⊗ . . .mi)(m
′
1 ⊗ · · · ⊗m′

j) = m1 ⊗ · · · ⊗mi ⊗m′
1 ⊗ · · · ⊗m′

j .

By definition, T i(M)T j(M) ⊂ T i+j(M).
By definition of tensor product, R commutes with T (M), so this is indeed an R-algebra.
The tensor algebra is a ring, but is actually an example of something called a graded ring.
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Definition 2.2. A ring R is called a graded ring if S = S0⊕S1⊕. . . such that each Si is a subgroup
and SiSj ⊂ Si+j for all i, j ≥ 0. The elements of the subgroup Sk are called homogeneous of
degree k.

An ideal I in a graded ring S is called a graded ideal if I = ⊕∞
k=0(I ∩ Sk).

A ring homomorphism between graded rings ϕ : S → T is called a graded homomorphism if
ϕ(Sk) ⊂ Tk.

Example 2.3. The polynomial ring S = R[x] is a graded ring, where Si = Rxi. In this ring, (x)
is a graded ideal, but I = (1+ x) is not: it is not homogeneous, and cannot be written as a sum of
homogeneous elements where each element is in I.

Example 2.4. By definition, T (M) is a graded ring.

If S is a graded ring and I is a graded ideal, let Ik = I ∩ Sk. Then, by the first isomorphism
theorem, S/I ∼= ⊕∞

k=0Sk/Ik (exercise: define a map S = ⊕Sk → ⊕Sk/Ik by the quotient on each
component, and show the kernel is I). Therefore, S/I is a graded ring and the homogeneous part
of degree k is just Sk/Ik.

Definition 2.5. The symmetric algebra of an R-module M is S(M) = T (M)/C(M), where
C(M) is the ideal of T (M) generated by all elements of the form m1 ⊗m2 −m2 ⊗m1.

In effect, the symmetric algebra is forced to be commutative. Because T (M) is generated as
a ring by R and T 1(M) = M and we are making these commute in the quotient ring, S(M) is
commutative. We can say precisely what the graded pieces are:

Theorem 2.6. The kth graded piece Sk(M) of S(M) is called the kth symmetric power of M and
is given by M ⊗ · · · ⊗M modulo the submodule generated by all elements

m1 ⊗m2 ⊗ · · · ⊗mk −mσ(1) ⊗mσ(2) ⊗ · · · ⊗mσ(k)

where mi in M and σ ∈ Sk (the symmetric group).

Proof. The elements in Ck(M) are finite sums of elements of the form

m1 ⊗ . . .mi−1 ⊗ (mi ⊗mi+1 −mi+1 ⊗mi)⊗mi+2 ⊗ · · · ⊗mk,

but distributing this gives

m1 ⊗ . . .mi−1 ⊗mi ⊗mi+1 ⊗mi+2 ⊗ · · · ⊗mk −m1 ⊗ . . .mi−1 ⊗mi+1 ⊗mi ⊗mi+2 ⊗ · · · ⊗mk

which is the difference of two elements that differ by the transposition σ = (ii+ 1) ∈ Sk. Because
the symmetric group is generated by transpositions, the theorem follows. □

Definition 2.7. The exterior algebra of an R-module M is the algebra obtained by quotienting
T (M) by the ideal A(M) generated by elements of the form m ⊗ m for m ∈ M . The exterior
algebra is denoted

∧
(M) and the image of m1 ⊗ · · · ⊗mk in

∧
(M) is denoted by m1 ∧ · · · ∧mk

(where the ∧ is pronounced ‘wedge’).

The exterior algebra is the algebra we get where we ‘force’ tensors to have no repeated elements
(those we set equal to 0). Here, the A stands for alternating because, for any m1,m2 ∈M ,

0 = (m1 +m2) ∧ (m1 +m2)

= m1 ∧m1 +m2 ∧m1 +m1 ∧m2 +m2 ∧m2

= m2 ∧m1 +m1 ∧m2

so m2 ∧ m1 = −m1 ∧ m2. Even if we had a longer tensor with more elements, this says that
switching the order of any two adjacent terms just changes the sign. So, a tensor m1∧ · · · ∧mk = 0
if and only if there are two repeated terms. This gives the following:
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Theorem 2.8. In
∧
(M), the kth exterior power

∧k(M) is M ⊗ · · · ⊗M modulo the submodule
generated by m1 ⊗ · · · ⊗mk where mi = mj for some i ̸= j. In particular, m1 ∧ · · · ∧mk = 0 if
m1 = mj for i ̸= j.

These modules are very important! You will see more examples on the homework.

3. 12.1: Finitely generated modules over PIDs

To conclude the class, we will classify finitely generated modules over PIDs. Some preliminaries
(linear algebra things); the proofs look like the proofs you’ve seen in linear algebra, so we omit
them. I encourage you to take a look in the book, though, because these results are where ‘PID’
comes in.

Definition 3.1. For any integral domain R, the rank of an R-module M is the maximal number
of R-linearly independent elements of M .

Theorem 3.2. If R is a PID and M is a free R-module of finite rank n, and N is any submodule
of M , then:

(1) N is free of rank m ≤ n, and
(2) there is a basis {y1, . . . , yn} of M such that {a1y1, . . . , amym} is a basis for N , where

a1, a2, . . . , am are nonzero elements of R.

This brings us to the main theorem!

Theorem 3.3. Let R be a PID and M a finitely generated R-module. Then:

M ∼= Rr ⊕R/(a1)⊕ · · · ⊕R/(am)

for some integer r ≥ 0 and nonzero, nonunit elements ai ∈ R.
The elements ai are called the invariant factors of M .

Proof. We prove the existence part. BecauseM is finitely generated, we can choose a set {x1, . . . , xn}
that generates M and n is minimal. Then, there is a surjective homomorphism from the free R-
module Rn with basis {b1, . . . , bn} given by π : Rn →M sending π(bi) = xi.

By the First Isomorphism Theorem, we know Rn/ kerπ ∼=M , but by the previous linear algebra
theorems, because kerπ is a submodule of Rn, we can choose a different basis {y1, . . . , yn} of Rn

such that kerπ has basis {a1y1, . . . , amym}, and then

M ∼= Rn/ kerπ = (Ry1 ⊕ · · · ⊕Ryn)/(Ra1y1 ⊕ · · · ⊕Ramym) ∼= R/(a1)⊕ · · · ⊕R/(am)⊕Rn−m.

We may assume each ai is not a unit because, if ai were a unit, then R/(ai) = 0 so we may
remove it from the sum. □

We can further decompose using the Chinese Remainder Theorem! Because PIDs are UFDs, for
each a ∈ {a1, . . . , am}, we can write a = upα1

1 . . . pαs
s where u is a unit and pi is prime. Then, by

the Chinese Remainder Theorem,

R/(a) ∼= R/(pα1
1 )⊕ · · · ⊕R/(pαs

s ).

Therefore, an alternative version of the previous theorem says:

Theorem 3.4. Let R be a PID and M a finitely generated R-module. Then:

M ∼= Rr ⊕R/(pα1
1 )⊕ · · · ⊕R/(pαt

t )

for some integer r ≥ 0 and primes pi. This decomposition is unique up to reordering.
The elements pαi

i are called the elementary divisors of M .

If R = Z, this theorem is *exactly* the classification of finitely generated abelian groups!
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