DECEMBER 7 NOTES

1. 10.4: (ONE MORE EXAMPLE OF) TENSOR PRODUCTS

Example 1.1. Let R be a ring and I an ideal and N an R-module. There is an N-submodule IN
defined to be all finite sums of products of elements in I with elements in V.

In this case, R/I g N = N/IN. Because 1 € R/I (the image of 1 in R) generates R/I as
an R-module, the elements 1 ® n generate R/I @ g N. There is an R-module homomorphism
N — R/I ®r N sending n — 1 ® n, which is surjective because the elements 1 ® n generate the
tensor product. The kernel must contain IN because, if a;n; € IN (a; € I,n; € N), this maps to
1®a;n; = a; ®n; = 0 because a; = 0 € R/I. This gives a surjective map N/IN — R/I @z N, and
we must show it is an isomorphism. But this follows because it has an inverse: R/I®@r N — N/IN
given by (r,n) — rn can be checked to be the inverse of this map.

A few other properties of the tensor product:

Theorem 1.2. If ¢ : M — M’ and ¢ : N — N’ are R-module homomorphisms, then
bR : Mog N — M @ N

given by (¢ @ Y)(m @n) = ¢p(m) @ ¢(n) is an R-module homomorphism.
Theorem 1.3. If M, N, L are R-modules, then (M ®r N) @r L = M @r (N ®r L).
Theorem 1.4. Let M, M’ and N, N’ be R-modules. Then,

(MeM)@r N2 (MerN)® (M @z N)

Mer(N®N)= (M@rN)d (Mg N').
Corollary 1.5. If S is a ring and f : R — S a homomorphism so that S is an R-module via
rs = f(r)s, then S®p = R and S ®p R™ = S™.
Corollary 1.6. For a ring R, R® ®r Rt = Rt. This says that the tensor product of two free

modules of finite rank is again free.

2. 11.5: TENSOR ALGEBRAS, SYMMETRIC AND EXTERIOR ALGEBRAS

We will continue to assume that R is a commutative ring with identity.

Definition 2.1. For each k > 1, let T*(M) = M ®r M ®p---®@r M (with k M’s). Let T°(M) = 0.
Define
T(M)=ReT (M) T*(M)®--- = O, TH(M).
T(M) is called the tensor algebra of M. The elements of the summand T%(M) are called
k-tensors.

This is called an algebra because it is an R-algebra (remember, this is a ring that is also an
R-module). It is an R-module because it is a sum of R-modules, and hence it is an abelian group,
and it becomes a ring when we define multiplication to be

/

(M ®..m)(m® - Qmi)=m - - @m@m) - Qm;.
By definition, T¢(M)T7 (M) C T (M).
By definition of tensor product, R commutes with T'(M), so this is indeed an R-algebra.

The tensor algebra is a ring, but is actually an example of something called a graded ring.
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Definition 2.2. A ring R is called a graded ring if § = SgS16. .. such that each S; is a subgroup
and S5;5; C Si4; for all 7,5 > 0. The elements of the subgroup S} are called homogeneous of
degree k.

An ideal I in a graded ring S is called a graded ideal if I = ®7° (I N Sy).

A ring homomorphism between graded rings ¢ : S — T is called a graded homomorphism if

#(Sk) C Tk

Example 2.3. The polynomial ring S = R[z] is a graded ring, where S; = Rx’. In this ring, (z)
is a graded ideal, but I = (14 x) is not: it is not homogeneous, and cannot be written as a sum of
homogeneous elements where each element is in I.

Example 2.4. By definition, T (M) is a graded ring.

If S is a graded ring and I is a graded ideal, let I, = I N S;. Then, by the first isomorphism
theorem, S/I = @ (Si/I} (exercise: define a map S = ®S), — ®S, /1) by the quotient on each
component, and show the kernel is I'). Therefore, S/I is a graded ring and the homogeneous part
of degree k is just Sg/I.

Definition 2.5. The symmetric algebra of an R-module M is S(M) = T(M)/C(M), where
C(M) is the ideal of T'(M) generated by all elements of the form m; ® ma — ma @ my.

In effect, the symmetric algebra is forced to be commutative. Because T'(M) is generated as
a ring by R and T'(M) = M and we are making these commute in the quotient ring, S(M) is
commutative. We can say precisely what the graded pieces are:

Theorem 2.6. The kth graded piece S¥(M) of S(M) is called the kth symmetric power of M and
s given by M & - -- @ M modulo the submodule generated by all elements

mi @ma @ -+ @My — Mg(1) @ My(2) @ -+ @ Mg (g)
where m; in M and o € Sy (the symmetric group).
Proof. The elements in C¥(M) are finite sums of elements of the form
m1®...mi—1 Q@ (m; @Mir1 — Mip1 @ M) @Mijro ® -+ @ my,
but distributing this gives
mp @ ...mi—1 @mMi @ M1 @M @+ @M —M1 Q... Mj—1 @ My @Mi @ My @ -+ @ My,

which is the difference of two elements that differ by the transposition o = (ii + 1) € Si. Because
the symmetric group is generated by transpositions, the theorem follows. ([l

Definition 2.7. The exterior algebra of an R-module M is the algebra obtained by quotienting
T(M) by the ideal A(M) generated by elements of the form m ® m for m € M. The exterior
algebra is denoted A(M) and the image of m; ® --- ® my, in A\(M) is denoted by my A --- A my
(where the A is pronounced ‘wedge’).

The exterior algebra is the algebra we get where we ‘force’ tensors to have no repeated elements
(those we set equal to 0). Here, the A stands for alternating because, for any mq,my € M,

0 = (my +ma) A (my +ma)
=mi1 Am1+mog Ami +my Amg+ mao Amo
=mo Amy1+mi Amsy
so mo A'm1 = —mq A mso. Even if we had a longer tensor with more elements, this says that

switching the order of any two adjacent terms just changes the sign. So, a tensor myA---Amg =0
if and only if there are two repeated terms. This gives the following:
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Theorem 2.8. In \(M), the kth exterior power N¥(M) is M @ --- ® M modulo the submodule
generated by my ® - -- @ my, where m; = m; for some i # j. In particular, mi A --- Amy = 0 if
my =my; fori#j.

These modules are very important! You will see more examples on the homework.

3. 12.1: FINITELY GENERATED MODULES OVER PIDs

To conclude the class, we will classify finitely generated modules over PIDs. Some preliminaries
(linear algebra things); the proofs look like the proofs you've seen in linear algebra, so we omit
them. I encourage you to take a look in the book, though, because these results are where ‘PID’
comes in.

Definition 3.1. For any integral domain R, the rank of an R-module M is the maximal number
of R-linearly independent elements of M.

Theorem 3.2. If R is a PID and M is a free R-module of finite rank n, and N is any submodule
of M, then:
(1) N is free of rank m < n, and
(2) there is a basis {yi,...,yn} of M such that {a1y1,...,amYm} is a basis for N, where
ai,as,...,ay are nonzero elements of R.

This brings us to the main theorem!

Theorem 3.3. Let R be a PID and M a finitely generated R-module. Then:
MR ®R/(a1) - ® R/(am)
for some integer r > 0 and nonzero, nonunit elements a; € R.

The elements a; are called the invariant factors of M.

Proof. We prove the existence part. Because M is finitely generated, we can choose a set {x1,...,z,}
that generates M and n is minimal. Then, there is a surjective homomorphism from the free R-
module R™ with basis {b1,...,b,} given by 7 : R" — M sending 7(b;) = z;.

By the First Isomorphism Theorem, we know R™/ker m 2 M, but by the previous linear algebra
theorems, because ker 7 is a submodule of R™, we can choose a different basis {y1,...,y,} of R"
such that ker 7 has basis {a1y1,...,am¥ym}, and then

M=R"/kerm = (Ry1 -+ ® Ryn)/(Ra1y1 ® - -+ ® Ramym) = R/(a1) ®---® R/(am) & R"™™.

We may assume each a; is not a unit because, if a; were a unit, then R/(a;) = 0 so we may
remove it from the sum. O

We can further decompose using the Chinese Remainder Theorem! Because PIDs are UFDs, for
each a € {a1,...,an}, we can write a = up]* ...p%* where v is a unit and p; is prime. Then, by
the Chinese Remainder Theorem,

R(a) = R/(") & & B/ ().

Therefore, an alternative version of the previous theorem says:

Theorem 3.4. Let R be a PID and M a finitely generated R-module. Then:
M=R"©R/(p")® - & R/(p")

for some integer r > 0 and primes p;. This decomposition is unique up to reordering.
The elements p;* are called the elementary divisors of M.

If R = Z, this theorem is *exactly* the classification of finitely generated abelian groups!
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