DECEMBER 7 NOTES

1. 10.4: (One more example of) Tensor Products

Example 1.1. Let R be a ring and I an ideal and N an R-module. There is an N-submodule IN defined to be all finite sums of products of elements in I with elements in N.

In this case, $R/I \otimes_R N \cong N/IN$. Because $1 \in R/I$ (the image of 1 in R) generates R/I as an R-module, the elements $1 \otimes n$ generate $R/I \otimes_R N$. There is an R-module homomorphism $N \to R/I \otimes_R N$ sending $n \mapsto 1 \otimes n$, which is surjective because the elements $1 \otimes n$ generate the tensor product. The kernel must contain IN because, if $a_i n_i \in IN$ ($a_i \in I, n_i \in N$), this maps to $1 \otimes a_i n_i = a_i \otimes n_i = 0$ because $a_i = 0 \in R/I$. This gives a surjective map $N/IN \to R/I \otimes_R N$, and we must show it is an isomorphism. But this follows because it has an inverse: $R/I \otimes_R N \to N/IN$ given by $(r, n) \mapsto rn$ can be checked to be the inverse of this map.

A few other properties of the tensor product:

Theorem 1.2. If $\phi : M \to M'$ and $\psi : N \to N'$ are *R*-module homomorphisms, then

$$\phi \otimes \psi : M \otimes_R N \to M' \otimes_R N'$$

given by $(\phi \otimes \psi)(m \otimes n) = \phi(m) \otimes \phi(n)$ is an *R*-module homomorphism.

Theorem 1.3. If M, N, L are R-modules, then $(M \otimes_R N) \otimes_R L \cong M \otimes_R (N \otimes_R L)$.

Theorem 1.4. Let M, M' and N, N' be R-modules. Then,

$$(M \oplus M') \otimes_R N \cong (M \otimes_R N) \oplus (M' \otimes_R N)$$
$$M \otimes_R (N \oplus N') \cong (M \otimes_R N) \oplus (M \otimes_R N').$$

Corollary 1.5. If S is a ring and $f : R \to S$ a homomorphism so that S is an R-module via rs = f(r)s, then $S \otimes_R \cong R$ and $S \otimes_R R^n \cong S^n$.

Corollary 1.6. For a ring R, $R^s \otimes_R R^t \cong R^{st}$. This says that the tensor product of two free modules of finite rank is again free.

2. 11.5: Tensor Algebras, Symmetric and Exterior Algebras

We will continue to assume that R is a commutative ring with identity.

Definition 2.1. For each $k \ge 1$, let $T^k(M) = M \otimes_R M \otimes_R \cdots \otimes_R M$ (with k M's). Let $T^0(M) = 0$. Define

$$T(M) = R \oplus T^{1}(M) \oplus T^{2}(M) \oplus \dots = \bigoplus_{k=0}^{\infty} T^{k}(M).$$

T(M) is called the **tensor algebra** of M. The elements of the summand $T^k(M)$ are called k-tensors.

This is called an algebra because it is an R-algebra (remember, this is a ring that is also an R-module). It is an R-module because it is a sum of R-modules, and hence it is an abelian group, and it becomes a ring when we define multiplication to be

$$(m_1 \otimes \ldots m_i)(m'_1 \otimes \cdots \otimes m'_j) = m_1 \otimes \cdots \otimes m_i \otimes m'_1 \otimes \cdots \otimes m'_j.$$

By definition, $T^{i}(M)T^{j}(M) \subset T^{i+j}(M)$.

By definition of tensor product, R commutes with T(M), so this is indeed an R-algebra.

The tensor algebra is a ring, but is actually an example of something called a graded ring.

Definition 2.2. A ring R is called a graded ring if $S = S_0 \oplus S_1 \oplus \ldots$ such that each S_i is a subgroup and $S_i S_j \subset S_{i+j}$ for all $i, j \ge 0$. The elements of the subgroup S_k are called homogeneous of degree k.

An ideal I in a graded ring S is called a **graded ideal** if $I = \bigoplus_{k=0}^{\infty} (I \cap S_k)$.

A ring homomorphism between graded rings $\phi : S \to T$ is called a **graded homomorphism** if $\phi(S_k) \subset T_k$.

Example 2.3. The polynomial ring S = R[x] is a graded ring, where $S_i = Rx^i$. In this ring, (x) is a graded ideal, but I = (1 + x) is not: it is not homogeneous, and cannot be written as a sum of homogeneous elements where each element is in I.

Example 2.4. By definition, T(M) is a graded ring.

If S is a graded ring and I is a graded ideal, let $I_k = I \cap S_k$. Then, by the first isomorphism theorem, $S/I \cong \bigoplus_{k=0}^{\infty} S_k/I_k$ (exercise: define a map $S = \bigoplus S_k \to \bigoplus S_k/I_k$ by the quotient on each component, and show the kernel is I). Therefore, S/I is a graded ring and the homogeneous part of degree k is just S_k/I_k .

Definition 2.5. The symmetric algebra of an *R*-module *M* is S(M) = T(M)/C(M), where C(M) is the ideal of T(M) generated by all elements of the form $m_1 \otimes m_2 - m_2 \otimes m_1$.

In effect, the symmetric algebra is *forced* to be commutative. Because T(M) is generated as a ring by R and $T^1(M) = M$ and we are making these commute in the quotient ring, S(M) is commutative. We can say precisely what the graded pieces are:

Theorem 2.6. The kth graded piece $S^k(M)$ of S(M) is called the kth symmetric power of M and is given by $M \otimes \cdots \otimes M$ modulo the submodule generated by all elements

 $m_1 \otimes m_2 \otimes \cdots \otimes m_k - m_{\sigma(1)} \otimes m_{\sigma(2)} \otimes \cdots \otimes m_{\sigma(k)}$

where m_i in M and $\sigma \in S_k$ (the symmetric group).

Proof. The elements in $C^k(M)$ are finite sums of elements of the form

$$m_1 \otimes \ldots m_{i-1} \otimes (m_i \otimes m_{i+1} - m_{i+1} \otimes m_i) \otimes m_{i+2} \otimes \cdots \otimes m_k,$$

but distributing this gives

$$m_1 \otimes \ldots m_{i-1} \otimes m_i \otimes m_{i+1} \otimes m_{i+2} \otimes \cdots \otimes m_k - m_1 \otimes \ldots m_{i-1} \otimes m_{i+1} \otimes m_i \otimes m_{i+2} \otimes \cdots \otimes m_k$$

which is the difference of two elements that differ by the transposition $\sigma = (ii + 1) \in S_k$. Because the symmetric group is generated by transpositions, the theorem follows.

Definition 2.7. The exterior algebra of an *R*-module *M* is the algebra obtained by quotienting T(M) by the ideal A(M) generated by elements of the form $m \otimes m$ for $m \in M$. The exterior algebra is denoted $\bigwedge(M)$ and the image of $m_1 \otimes \cdots \otimes m_k$ in $\bigwedge(M)$ is denoted by $m_1 \wedge \cdots \wedge m_k$ (where the \wedge is pronounced 'wedge').

The exterior algebra is the algebra we get where we 'force' tensors to have no repeated elements (those we set equal to 0). Here, the A stands for alternating because, for any $m_1, m_2 \in M$,

$$0 = (m_1 + m_2) \land (m_1 + m_2)$$

= $m_1 \land m_1 + m_2 \land m_1 + m_1 \land m_2 + m_2 \land m_2$
= $m_2 \land m_1 + m_1 \land m_2$

so $m_2 \wedge m_1 = -m_1 \wedge m_2$. Even if we had a longer tensor with more elements, this says that switching the order of any two adjacent terms just changes the sign. So, a tensor $m_1 \wedge \cdots \wedge m_k = 0$ if and only if there are two repeated terms. This gives the following: **Theorem 2.8.** In $\bigwedge(M)$, the kth exterior power $\bigwedge^k(M)$ is $M \otimes \cdots \otimes M$ modulo the submodule generated by $m_1 \otimes \cdots \otimes m_k$ where $m_i = m_j$ for some $i \neq j$. In particular, $m_1 \wedge \cdots \wedge m_k = 0$ if $m_1 = m_j$ for $i \neq j$.

These modules are very important! You will see more examples on the homework.

3. 12.1: Finitely generated modules over PIDs

To conclude the class, we will classify finitely generated modules over PIDs. Some preliminaries (linear algebra things); the proofs look like the proofs you've seen in linear algebra, so we omit them. I encourage you to take a look in the book, though, because these results are where 'PID' comes in.

Definition 3.1. For any integral domain R, the **rank** of an R-module M is the maximal number of R-linearly independent elements of M.

Theorem 3.2. If R is a PID and M is a free R-module of finite rank n, and N is any submodule of M, then:

- (1) N is free of rank $m \leq n$, and
- (2) there is a basis $\{y_1, \ldots, y_n\}$ of M such that $\{a_1y_1, \ldots, a_my_m\}$ is a basis for N, where a_1, a_2, \ldots, a_m are nonzero elements of R.

This brings us to the main theorem!

Theorem 3.3. Let R be a PID and M a finitely generated R-module. Then:

$$M \cong R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_m)$$

for some integer $r \geq 0$ and nonzero, nonunit elements $a_i \in R$.

The elements a_i are called the **invariant factors** of M.

Proof. We prove the existence part. Because M is finitely generated, we can choose a set $\{x_1, \ldots, x_n\}$ that generates M and n is minimal. Then, there is a surjective homomorphism from the free R-module R^n with basis $\{b_1, \ldots, b_n\}$ given by $\pi : R^n \to M$ sending $\pi(b_i) = x_i$.

By the First Isomorphism Theorem, we know $\mathbb{R}^n / \ker \pi \cong M$, but by the previous linear algebra theorems, because $\ker \pi$ is a submodule of \mathbb{R}^n , we can choose a different basis $\{y_1, \ldots, y_n\}$ of \mathbb{R}^n such that $\ker \pi$ has basis $\{a_1y_1, \ldots, a_my_m\}$, and then

$$M \cong R^n / \ker \pi = (Ry_1 \oplus \cdots \oplus Ry_n) / (Ra_1y_1 \oplus \cdots \oplus Ra_my_m) \cong R / (a_1) \oplus \cdots \oplus R / (a_m) \oplus R^{n-m}.$$

We may assume each a_i is not a unit because, if a_i were a unit, then $R/(a_i) = 0$ so we may remove it from the sum.

We can further decompose using the Chinese Remainder Theorem! Because PIDs are UFDs, for each $a \in \{a_1, \ldots, a_m\}$, we can write $a = up_1^{\alpha_1} \ldots p_s^{\alpha_s}$ where u is a unit and p_i is prime. Then, by the Chinese Remainder Theorem,

$$R/(a) \cong R/(p_1^{\alpha_1}) \oplus \cdots \oplus R/(p_s^{\alpha_s}).$$

Therefore, an alternative version of the previous theorem says:

Theorem 3.4. Let R be a PID and M a finitely generated R-module. Then:

$$M \cong R^r \oplus R/(p_1^{\alpha_1}) \oplus \cdots \oplus R/(p_t^{\alpha_t})$$

for some integer $r \ge 0$ and primes p_i . This decomposition is unique up to reordering. The elements $p_i^{\alpha_i}$ are called the **elementary divisors** of M.

If $R = \mathbb{Z}$, this theorem is *exactly* the classification of finitely generated abelian groups!