## DECEMBER 7 NOTES

## 1. 10.4: (One more example of) Tensor Products

Example 1.1. Let $R$ be a ring and $I$ an ideal and $N$ an $R$-module. There is an $N$-submodule $I N$ defined to be all finite sums of products of elements in $I$ with elements in $N$.

In this case, $R / I \otimes_{R} N \cong N / I N$. Because $1 \in R / I$ (the image of 1 in $R$ ) generates $R / I$ as an $R$-module, the elements $1 \otimes n$ generate $R / I \otimes_{R} N$. There is an $R$-module homomorphism $N \rightarrow R / I \otimes_{R} N$ sending $n \mapsto 1 \otimes n$, which is surjective because the elements $1 \otimes n$ generate the tensor product. The kernel must contain $I N$ because, if $a_{i} n_{i} \in I N\left(a_{i} \in I, n_{i} \in N\right)$, this maps to $1 \otimes a_{i} n_{i}=a_{i} \otimes n_{i}=0$ because $a_{i}=0 \in R / I$. This gives a surjective map $N / I N \rightarrow R / I \otimes_{R} N$, and we must show it is an isomorphism. But this follows because it has an inverse: $R / I \otimes_{R} N \rightarrow N / I N$ given by $(r, n) \mapsto r n$ can be checked to be the inverse of this map.

A few other properties of the tensor product:
Theorem 1.2. If $\phi: M \rightarrow M^{\prime}$ and $\psi: N \rightarrow N^{\prime}$ are $R$-module homomorphisms, then

$$
\phi \otimes \psi: M \otimes_{R} N \rightarrow M^{\prime} \otimes_{R} N^{\prime}
$$

given by $(\phi \otimes \psi)(m \otimes n)=\phi(m) \otimes \phi(n)$ is an $R$-module homomorphism.
Theorem 1.3. If $M, N, L$ are $R$-modules, then $\left(M \otimes_{R} N\right) \otimes_{R} L \cong M \otimes_{R}\left(N \otimes_{R} L\right)$.
Theorem 1.4. Let $M, M^{\prime}$ and $N, N^{\prime}$ be $R$-modules. Then,

$$
\begin{aligned}
& \left(M \oplus M^{\prime}\right) \otimes_{R} N \cong\left(M \otimes_{R} N\right) \oplus\left(M^{\prime} \otimes_{R} N\right) \\
& M \otimes_{R}\left(N \oplus N^{\prime}\right) \cong\left(M \otimes_{R} N\right) \oplus\left(M \otimes_{R} N^{\prime}\right) .
\end{aligned}
$$

Corollary 1.5. If $S$ is a ring and $f: R \rightarrow S$ a homomorphism so that $S$ is an $R$-module via $r s=f(r) s$, then $S \otimes_{R} \cong R$ and $S \otimes_{R} R^{n} \cong S^{n}$.
Corollary 1.6. For a ring $R, R^{s} \otimes_{R} R^{t} \cong R^{s t}$. This says that the tensor product of two free modules of finite rank is again free.

## 2. 11.5: Tensor Algebras, Symmetric and Exterior Algebras

We will continue to assume that $R$ is a commutative ring with identity.
Definition 2.1. For each $k \geq 1$, let $T^{k}(M)=M \otimes_{R} M \otimes_{R} \cdots \otimes_{R} M$ (with $k M$ 's). Let $T^{0}(M)=0$. Define

$$
T(M)=R \oplus T^{1}(M) \oplus T^{2}(M) \oplus \cdots=\oplus_{k=0}^{\infty} T^{k}(M)
$$

$T(M)$ is called the tensor algebra of $M$. The elements of the summand $T^{k}(M)$ are called $k$-tensors.

This is called an algebra because it is an $R$-algebra (remember, this is a ring that is also an $R$-module). It is an $R$-module because it is a sum of $R$-modules, and hence it is an abelian group, and it becomes a ring when we define multiplication to be

$$
\left(m_{1} \otimes \ldots m_{i}\right)\left(m_{1}^{\prime} \otimes \cdots \otimes m_{j}^{\prime}\right)=m_{1} \otimes \cdots \otimes m_{i} \otimes m_{1}^{\prime} \otimes \cdots \otimes m_{j}^{\prime} .
$$

By definition, $T^{i}(M) T^{j}(M) \subset T^{i+j}(M)$.
By definition of tensor product, $R$ commutes with $T(M)$, so this is indeed an $R$-algebra.
The tensor algebra is a ring, but is actually an example of something called a graded ring.

Definition 2.2. A ring $R$ is called a graded ring if $S=S_{0} \oplus S_{1} \oplus \ldots$ such that each $S_{i}$ is a subgroup and $S_{i} S_{j} \subset S_{i+j}$ for all $i, j \geq 0$. The elements of the subgroup $S_{k}$ are called homogeneous of degree $k$.

An ideal $I$ in a graded ring $S$ is called a graded ideal if $I=\oplus_{k=0}^{\infty}\left(I \cap S_{k}\right)$.
A ring homomorphism between graded rings $\phi: S \rightarrow T$ is called a graded homomorphism if $\phi\left(S_{k}\right) \subset T_{k}$.

Example 2.3. The polynomial ring $S=R[x]$ is a graded ring, where $S_{i}=R x^{i}$. In this ring, $(x)$ is a graded ideal, but $I=(1+x)$ is not: it is not homogeneous, and cannot be written as a sum of homogeneous elements where each element is in $I$.

Example 2.4. By definition, $T(M)$ is a graded ring.
If $S$ is a graded ring and $I$ is a graded ideal, let $I_{k}=I \cap S_{k}$. Then, by the first isomorphism theorem, $S / I \cong \oplus_{k=0}^{\infty} S_{k} / I_{k}$ (exercise: define a map $S=\oplus S_{k} \rightarrow \oplus S_{k} / I_{k}$ by the quotient on each component, and show the kernel is $I$ ). Therefore, $S / I$ is a graded ring and the homogeneous part of degree $k$ is just $S_{k} / I_{k}$.

Definition 2.5. The symmetric algebra of an $R$-module $M$ is $S(M)=T(M) / C(M)$, where $C(M)$ is the ideal of $T(M)$ generated by all elements of the form $m_{1} \otimes m_{2}-m_{2} \otimes m_{1}$.

In effect, the symmetric algebra is forced to be commutative. Because $T(M)$ is generated as a ring by $R$ and $T^{1}(M)=M$ and we are making these commute in the quotient ring, $S(M)$ is commutative. We can say precisely what the graded pieces are:
Theorem 2.6. The kth graded piece $S^{k}(M)$ of $S(M)$ is called the $k$ th symmetric power of $M$ and is given by $M \otimes \cdots \otimes M$ modulo the submodule generated by all elements

$$
m_{1} \otimes m_{2} \otimes \cdots \otimes m_{k}-m_{\sigma(1)} \otimes m_{\sigma(2)} \otimes \cdots \otimes m_{\sigma(k)}
$$

where $m_{i}$ in $M$ and $\sigma \in S_{k}$ (the symmetric group).
Proof. The elements in $C^{k}(M)$ are finite sums of elements of the form

$$
m_{1} \otimes \ldots m_{i-1} \otimes\left(m_{i} \otimes m_{i+1}-m_{i+1} \otimes m_{i}\right) \otimes m_{i+2} \otimes \cdots \otimes m_{k}
$$

but distributing this gives

$$
m_{1} \otimes \ldots m_{i-1} \otimes m_{i} \otimes m_{i+1} \otimes m_{i+2} \otimes \cdots \otimes m_{k}-m_{1} \otimes \ldots m_{i-1} \otimes m_{i+1} \otimes m_{i} \otimes m_{i+2} \otimes \cdots \otimes m_{k}
$$

which is the difference of two elements that differ by the transposition $\sigma=(i i+1) \in S_{k}$. Because the symmetric group is generated by transpositions, the theorem follows.
Definition 2.7. The exterior algebra of an $R$-module $M$ is the algebra obtained by quotienting $T(M)$ by the ideal $A(M)$ generated by elements of the form $m \otimes m$ for $m \in M$. The exterior algebra is denoted $\Lambda(M)$ and the image of $m_{1} \otimes \cdots \otimes m_{k}$ in $\Lambda(M)$ is denoted by $m_{1} \wedge \cdots \wedge m_{k}$ (where the $\wedge$ is pronounced 'wedge').

The exterior algebra is the algebra we get where we 'force' tensors to have no repeated elements (those we set equal to 0 ). Here, the $A$ stands for alternating because, for any $m_{1}, m_{2} \in M$,

$$
\begin{aligned}
0 & =\left(m_{1}+m_{2}\right) \wedge\left(m_{1}+m_{2}\right) \\
& =m_{1} \wedge m_{1}+m_{2} \wedge m_{1}+m_{1} \wedge m_{2}+m_{2} \wedge m_{2} \\
& =m_{2} \wedge m_{1}+m_{1} \wedge m_{2}
\end{aligned}
$$

so $m_{2} \wedge m_{1}=-m_{1} \wedge m_{2}$. Even if we had a longer tensor with more elements, this says that switching the order of any two adjacent terms just changes the sign. So, a tensor $m_{1} \wedge \cdots \wedge m_{k}=0$ if and only if there are two repeated terms. This gives the following:

Theorem 2.8. In $\bigwedge(M)$, the kth exterior power $\bigwedge^{k}(M)$ is $M \otimes \cdots \otimes M$ modulo the submodule generated by $m_{1} \otimes \cdots \otimes m_{k}$ where $m_{i}=m_{j}$ for some $i \neq j$. In particular, $m_{1} \wedge \cdots \wedge m_{k}=0$ if $m_{1}=m_{j}$ for $i \neq j$.

These modules are very important! You will see more examples on the homework.

## 3. 12.1: Finitely generated modules over Pids

To conclude the class, we will classify finitely generated modules over PIDs. Some preliminaries (linear algebra things); the proofs look like the proofs you've seen in linear algebra, so we omit them. I encourage you to take a look in the book, though, because these results are where 'PID' comes in.

Definition 3.1. For any integral domain $R$, the rank of an $R$-module $M$ is the maximal number of $R$-linearly independent elements of $M$.
Theorem 3.2. If $R$ is a PID and $M$ is a free $R$-module of finite rank $n$, and $N$ is any submodule of $M$, then:
(1) $N$ is free of rank $m \leq n$, and
(2) there is a basis $\left\{y_{1}, \ldots, y_{n}\right\}$ of $M$ such that $\left\{a_{1} y_{1}, \ldots, a_{m} y_{m}\right\}$ is a basis for $N$, where $a_{1}, a_{2}, \ldots, a_{m}$ are nonzero elements of $R$.

This brings us to the main theorem!
Theorem 3.3. Let $R$ be a PID and $M$ a finitely generated $R$-module. Then:

$$
M \cong R^{r} \oplus R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{m}\right)
$$

for some integer $r \geq 0$ and nonzero, nonunit elements $a_{i} \in R$.
The elements $a_{i}$ are called the invariant factors of $M$.
Proof. We prove the existence part. Because $M$ is finitely generated, we can choose a set $\left\{x_{1}, \ldots, x_{n}\right\}$ that generates $M$ and $n$ is minimal. Then, there is a surjective homomorphism from the free $R$ module $R^{n}$ with basis $\left\{b_{1}, \ldots, b_{n}\right\}$ given by $\pi: R^{n} \rightarrow M$ sending $\pi\left(b_{i}\right)=x_{i}$.

By the First Isomorphism Theorem, we know $R^{n} / \operatorname{ker} \pi \cong M$, but by the previous linear algebra theorems, because ker $\pi$ is a submodule of $R^{n}$, we can choose a different basis $\left\{y_{1}, \ldots, y_{n}\right\}$ of $R^{n}$ such that ker $\pi$ has basis $\left\{a_{1} y_{1}, \ldots, a_{m} y_{m}\right\}$, and then

$$
M \cong R^{n} / \operatorname{ker} \pi=\left(R y_{1} \oplus \cdots \oplus R y_{n}\right) /\left(R a_{1} y_{1} \oplus \cdots \oplus R a_{m} y_{m}\right) \cong R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{m}\right) \oplus R^{n-m}
$$

We may assume each $a_{i}$ is not a unit because, if $a_{i}$ were a unit, then $R /\left(a_{i}\right)=0$ so we may remove it from the sum.

We can further decompose using the Chinese Remainder Theorem! Because PIDs are UFDs, for each $a \in\left\{a_{1}, \ldots, a_{m}\right\}$, we can write $a=u p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$ where $u$ is a unit and $p_{i}$ is prime. Then, by the Chinese Remainder Theorem,

$$
R /(a) \cong R /\left(p_{1}^{\alpha_{1}}\right) \oplus \cdots \oplus R /\left(p_{s}^{\alpha_{s}}\right) .
$$

Therefore, an alternative version of the previous theorem says:
Theorem 3.4. Let $R$ be a PID and $M$ a finitely generated $R$-module. Then:

$$
M \cong R^{r} \oplus R /\left(p_{1}^{\alpha_{1}}\right) \oplus \cdots \oplus R /\left(p_{t}^{\alpha_{t}}\right)
$$

for some integer $r \geq 0$ and primes $p_{i}$. This decomposition is unique up to reordering.
The elements $p_{i}^{\alpha_{i}}$ are called the elementary divisors of $M$.
If $R=\mathbb{Z}$, this theorem is *exactly* the classification of finitely generated abelian groups!

