DECEMBER 5 NOTES

1. 10.4: Tensor Products

Construction. Suppose that R is a subring of S, and that N is an R-module. Then, $S \times N$ is an abelian group. If N were to be an S module, we would have to define an action $S \times N \rightarrow N$ where $(s, n) \mapsto s n$ satisfying that $\left(s_{1}+s_{2}\right) n=s_{1} n+s_{2} n$ and the rest of the module axioms. This doesn't quite work, but gives the inspiration for the construction.

Consider the free \mathbb{Z}-module $F(S \times N)$ on the set $S \times N$, which is the collection of all finite sums of elements $\left(s_{i}, n_{i}\right)$ with $s_{i} \in S$ and $n_{i} \in N$. Let H be the subgroup generated by all elements of the form:

$$
\begin{gathered}
\left(s_{1}+s_{2}, n\right)-\left(s_{1}, n\right)-\left(s_{2}, n\right) \\
\left(s, n_{1}+n_{2}\right)-\left(s, n_{1}\right)-\left(s, n_{2}\right) \\
(s r, n)-(s, r n)
\end{gathered}
$$

for elements $s, s_{1}, s_{2} \in S, n, n_{1}, n_{2} \in N$, and $r \in R$.
Denote by $S \otimes_{R} N$ (' S tensor N ', where the symbol \otimes is typeset by 'otimes') the quotient of $F(S \times N)$ by this subgroup H. Let $s \otimes n$ be the coset of the element (s, n) in this quotient. The group $S \otimes_{R} N$ is called the tensor product of S and N, elements of $S \otimes_{R} N$ are called tensors and elements of the form $s \otimes n$ are called simple tensors.

By construction, every element of the tensor product can be written as a finite sum of simple tensors, and we have forced the relations:

$$
\begin{gathered}
\left(s_{1}+s_{2}\right) \otimes n=s_{1} \otimes n+s_{2} \otimes n \\
s \otimes\left(n_{1}+n_{2}\right)=s \otimes n_{1}+s \otimes n_{2} \\
s r \otimes n=s \otimes r n .
\end{gathered}
$$

We define an action of S on $S \otimes_{R} N$ by

$$
s\left(s_{1} \otimes n_{1}+\cdots+s_{k} \otimes n_{k}\right)=\left(s s_{1}\right) \otimes n_{1}+\cdots+\left(s s_{k}\right) \otimes n_{k} .
$$

One has to check that this is well defined (because there is typically no unique way of writing a tensor as a sum of simple tensors), but that follows by construction.

Finally, one can show that this action makes $S \otimes_{R} N$ into an S module. For example:

$$
\begin{aligned}
\left(s+s^{\prime}\right) \otimes\left(s_{i}, n_{i}\right) & =\left(\left(s+s^{\prime}\right) s_{i}\right) \otimes n_{i} \\
& =\left(s s_{i}+s^{\prime} s_{i}\right) \otimes n_{i} \\
& =\left(s s_{i}\right) \otimes n_{i}+\left(s^{\prime} s_{i}\right) \otimes n_{i} \\
& =s\left(s_{i} \otimes n_{i}\right)+s^{\prime}\left(s_{i} \otimes n_{i}\right) .
\end{aligned}
$$

The remaining axioms are checked similarly.
So, we have 'extended' the R-module N to the S-module $S \otimes_{R} N$. This is usually referred to as extension of scalars.

Note that there is a natural R-module homomorphism $i: N \rightarrow S \otimes_{R} N$ given by $i(n)=1 \otimes n$. Using this homomorphism, we can show that module $S \otimes_{R} N$ is, in a precise sense, the 'smallest' S module we can make that admits a homomorphism from N. This is why this is usually referred to as 'extension' to S.

Theorem 1.1. Let R be a subring of S and let N be an R-module. Let $i: N \rightarrow S \otimes_{R} N$ be the R-module homomorphism $i(n)=1 \otimes n$. Suppose that L is any S-module and that $\phi: N \rightarrow L$ is any homomorphism of R-modules. Then, there exists a unique homomorphism of S-modules $\Phi: S \otimes_{R} N \rightarrow L$ such that $\phi=\Phi \circ i$. We express this with a diagram:

Conversely, if $\Phi: S \otimes_{R} N \rightarrow L$ is any S-module homomorphism, $\phi=\Phi \circ i: N \rightarrow L$ is an R-module homomorphism.

Proof. Suppose $\phi: N \rightarrow L$ is an R-module homomorphism. There is a \mathbb{Z}-module homomorphism from $\Phi_{F}: F(S \times N)$ to L sending each generator (s, n) to $s \phi(n)$ (exercise: check this is a homomorphism). Because ϕ is an R-module homomorphism, the elements of H (the subgroup of relations with which we mod out $F(S \times N)$) must map to 0 under this homomorphism; for example:

$$
\begin{aligned}
\Phi_{F}\left(\left(s_{1}+s_{2}, n\right)-\left(s_{1}, n\right)-\left(s_{2}, n\right)\right) & =\Phi_{F}\left(s_{1}+s_{2}, n\right)-\Phi_{F}\left(s_{1}, n\right)-\Phi_{F}\left(s_{2}, n\right) \\
& =\left(s_{1}+s_{2}\right) \phi(n)-s_{1} \phi(n)-s_{2} \phi(n) \\
& =0 \phi(n) \\
& =0
\end{aligned}
$$

Therefore, this homomorphism Φ_{F} factors through the quotient $F(S \times N) / H=S \otimes_{R} N$. Let $\Phi: S \otimes_{R} N \rightarrow L$ be this homomorphism, which by definition is given by $\Phi(s \otimes n)=s \phi(n)$. This is actually a homomorphism of S-modules:

$$
\begin{aligned}
\Phi\left(s^{\prime}\left(s_{1} \otimes n_{1}\right)+\left(s_{2} \otimes n_{2}\right)\right) & =\Phi\left(s^{\prime}\left(s_{1} \otimes n_{1}\right)\right)+\Phi\left(s_{2} \otimes n_{2}\right) \\
& =\Phi\left(\left(s^{\prime} s_{1}\right) \otimes n_{1}\right)+\Phi\left(s_{2} \otimes n_{2}\right) \\
& =\left(s^{\prime} s_{1}\right) \phi\left(n_{1}\right)+s_{2} \phi\left(n_{2}\right) \\
& =s^{\prime}\left(s_{1} \phi\left(n_{1}\right)\right)+s_{2} \phi\left(n_{2}\right) \\
& =s^{\prime} \Phi\left(s_{1} \otimes n_{1}\right)+\Phi\left(s_{2} \otimes n_{2}\right)
\end{aligned}
$$

This homomorphism is unique because $S \otimes_{R} N$ is generated as an S-module by the elements $1 \otimes n$, and $\Phi(1 \otimes n)=\phi(n)$, so Φ is uniquely determined by ϕ.

The converse statement is automatic.
The previous theorem is called a 'universal property' and controls the relationship between R modules and S-modules.

Corollary 1.2. If $i: N \rightarrow S \otimes_{R} N$ is the homomorphism in the previous theorem, then $N /$ ker i is the largest quotient of N that can be embedded in any S-module. In particular, if i is not injective, then N cannot be embedded in any S-module. (Here: 'embedding' means 'mapped injectively to'.)

Proof. By the First Isomorphism Theorem, $N / \operatorname{ker} i$ is mapped injectively to $S \otimes_{R} N$. If $\phi: N \rightarrow L$ is any homomorphism mapping the quotient $N / \operatorname{ker} \phi$ injectively to L, then this factors through the map $i: N \rightarrow S \otimes_{R} N$. Because ker i must be mapped to 0 by ϕ, this implies that ker $i \subset \operatorname{ker} \phi$. Therefore, $N /$ ker i is the largest quotient that can map injectively to an S-module L.

Example 1.3. If R is any ring and N is any R-module, then $R \otimes_{R} N \cong N$ because we could consider $\phi: N \rightarrow N$ the identity map. Then, the diagram in the previous theorem says $\phi=\Phi \circ i: N \rightarrow N$, so $i: N \rightarrow R \otimes_{R} N$ is a bijective homomorphism with inverse Φ, so is an isomorphism.

In particular, if $R=\mathbb{Z}$ and A is any abelian group, then $\mathbb{Z} \otimes_{\mathbb{Z}} A \cong A$.
Example 1.4. Let $R=\mathbb{Z}$. We just showed that $\mathbb{Z} \otimes_{\mathbb{Z}} A \cong A$. What about if $S=\mathbb{Q}$? What is $\mathbb{Q} \otimes_{\mathbb{Z}} A$? First observe that $s \otimes 0=s \otimes(0+0)=s \otimes 0+s \otimes 0$, so subtracting one $s \otimes 0$ from both sides shows that $s \otimes 0=0$. (This is true in any tensor product!)

Now suppose A is a finite abelian group with $|A|=n$. By Lagrange's Theorem, this means $n a=0$ for any $a \in A$. Let $q \otimes a \in \mathbb{Q} \otimes_{\mathbb{Z}} A$ be any simple tensor. Because $q=(q / n) n$, we can write

$$
q \otimes a=((q / n) n) \otimes a=q / n \otimes n a=q / n \otimes 0=0
$$

so any simple tensor is just equal to 0 . Because every element of $\mathbb{Q} \otimes_{\mathbb{Z}} A$ is a sum of simple tensors, this implies that $\mathbb{Q} \otimes_{\mathbb{Z}} A=0$ for all finite abelian groups.

Now we define tensor products in general, where we just replace S with any R-module. Let M and N be two R-modules. Because R is commutative, let us define a right action on M as $m r=r m$. (As in, the right action is the same as the left action.) This makes M into an R-module with a right action: $m(r s)=(r s) m=(s r) m=s(r m)=(r m) s=m(r s)$.

Consider again the free \mathbb{Z} module $F(M \times N)$ and H the subgroup generated by

$$
\begin{gathered}
\left(m_{1}+m_{2}, n\right)-\left(m_{1}, n\right)-\left(m_{2}, n\right) \\
\left(m, n_{1}+n_{2}\right)-\left(m, n_{1}\right)-\left(m, n_{2}\right) \\
(m r, n)-(m, r n)
\end{gathered}
$$

for elements $m, m_{1}, m_{2} \in S, n, n_{1}, n_{2} \in N$, and $r \in R$ and define $M \otimes_{R} N=F(M \times N) / H$. Again, the elements are called tensors, and the elements of the form $m \otimes n$ are called simple tensors. By defining the action of R to be $r(m \otimes n)=(r m) \otimes n=(m r) \otimes n=m \otimes(r n)$, we see that $M \otimes_{R} N$ is an R-module.

Definition 1.5. Suppose R is commutative and M, N are R-modules. Define the right action on M as above. For any abelian group L, a map $\phi: M \times N \rightarrow L$ is called balanced if

$$
\begin{gathered}
\phi\left(m_{1}+m_{2}, n\right)=\phi\left(m_{1}, n\right)+\phi\left(m_{2}, n\right) \\
\phi\left(m, n_{1}+n_{2}\right)=\phi\left(m, n_{1}\right)+\phi\left(m, n_{2}\right) \\
\phi(m, r n)=\phi(m r, n) .
\end{gathered}
$$

If L is an R-module, the map ϕ is called R-bilinear if it is balanced and $\phi(m r, n)=\phi(m, r n)=r \phi(m, n)$.
Exactly as before for $S \otimes_{R} N$, we have a universal property. The map $i: M \times N \rightarrow M \otimes_{R} N$ given by $i(m, n)=m \otimes n$ is R-bilinear, and given any R-bilinear map $\phi: M \times N \rightarrow L$, there is a unique map $\Phi: M \otimes_{R} N \rightarrow L$ such that $\phi=\Phi \circ i$:

Time for examples!
Example 1.6. The tensor product $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}$ is 0 because $3 a=a$ for any $a \in \mathbb{Z}_{2}$, so

$$
a \otimes b=3 a \otimes b=a \otimes 3 b=a \otimes 0=0 .
$$

In general, $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m} \cong \mathbb{Z}_{d}$ where $d=\operatorname{gcd}(n, m)$: let $a \otimes b$ be any element in the tensor product. Then, $a \otimes b=a \otimes(b 1)=a b \otimes 1=(a b)(1 \otimes 1)$, so any tensor is a multiple of $1 \otimes 1$, so $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m}$ is cyclic. Furthermore, since $d=x n+y m$ for some integers x, y, we have $d(1 \otimes 1)=(x n+y m)(1 \otimes 1)=x n(1 \otimes 1)+y m(1 \otimes 1)=x(n \otimes 1)+y(1 \otimes m)=0+0=0$, so the order of this element $1 \otimes 1$ is a divisor of d. By considering the map $\mathbb{Z}_{n} \times \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{d}$ mapping $(a, b) \rightarrow a b$
$(\bmod d)$ which is \mathbb{Z}-bilinear, it factors through the tensor product and the induced map sends $1 \otimes 1$ to 1 , which has order d, so $1 \otimes 1$ has order at least d. Therefore, $1 \otimes 1$ has order exactly d and $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m} \cong \mathbb{Z}_{d}$.

Example 1.7. Let R be a ring and I an ideal and N an R-module. There is an N-submodule $I N$ defined to be all finite sums of products of elements in I with elements in N.

In this case, $R / I \otimes_{R} N \cong N / I N$. Because $1 \in R / I$ (the image of 1 in R) generates R / I as an R-module, the elements $1 \otimes n$ generate $R / I \otimes_{R} N$. There is an R-module homomorphism $N \rightarrow R / I \otimes_{R} N$ sending $n \mapsto 1 \otimes n$, which is surjective because the elements $1 \otimes n$ generate the tensor product. The kernel must contain $I N$ because, if $a_{i} n_{i} \in I N\left(a_{i} \in I, n_{i} \in N\right)$, this maps to $1 \otimes a_{i} n_{i}=a_{i} \otimes n_{i}=0$ because $a_{i}=0 \in R / I$. This gives a surjective map $N / I N \rightarrow R / I \otimes_{R} N$, and we must show it is an isomorphism. But this follows because it has an inverse: $R / I \otimes_{R} N \rightarrow N / I N$ given by $(r, n) \mapsto r n$ can be checked to be the inverse of this map.
Remark 1.8. The previous example is a special case of our first construction of $S \otimes_{R} N$, where $S=R / I$ (because there is a natural homomorphism $f: R \rightarrow R / I$). So, this tensor product $R / I \otimes_{R} N$ is an R-module, but it is also an R / I-module as constructed above. In general, if R, S are commutative rings and M is both an R and an S module (called an R, S-bimodule) and N is an R-module, then $M \otimes_{R} N$ will also be an R, S-bimodule.

A few other properties of the tensor product (we ran out of time for these in class, but take a look if you wish):

Theorem 1.9. If $\phi: M \rightarrow M^{\prime}$ and $\psi: N \rightarrow N^{\prime}$ are R-module homomorphisms, then

$$
\phi \otimes \psi: M \otimes_{R} N \rightarrow M^{\prime} \otimes_{R} N^{\prime}
$$

given by $(\phi \otimes \psi)(m \otimes n)=\phi(m) \otimes \phi(n)$ is an R-module homomorphism.
Theorem 1.10. If M, N, L are R-modules, then $\left(M \otimes_{R} N\right) \otimes_{R} L \cong M \otimes_{R}\left(N \otimes_{R} L\right)$.
Theorem 1.11. Let M, M^{\prime} and N, N^{\prime} be R-modules. Then,

$$
\begin{aligned}
& \left(M \oplus M^{\prime}\right) \otimes_{R} N \cong\left(M \otimes_{R} N\right) \oplus\left(M^{\prime} \otimes_{R} N\right) \\
& M \otimes_{R}\left(N \oplus N^{\prime}\right) \cong\left(M \otimes_{R} N\right) \oplus\left(M \otimes_{R} N^{\prime}\right) .
\end{aligned}
$$

Corollary 1.12. If S is a ring and $f: R \rightarrow S$ a homomorphism so that S is an R-module via $r s=f(r) s$, then $S \otimes_{R} \cong R$ and $S \otimes_{R} R^{n} \cong S^{n}$.

Corollary 1.13. For a ring $R, R^{s} \otimes_{R} R^{t} \cong R^{s t}$. This says that the tensor product of two free modules of finite rank is again free.

