
DECEMBER 5 NOTES

1. 10.4: Tensor Products

Construction. Suppose that R is a subring of S, and that N is an R-module. Then, S ×N is an
abelian group. If N were to be an S module, we would have to define an action S×N → N where
(s, n) 7→ sn satisfying that (s1 + s2)n = s1n+ s2n and the rest of the module axioms. This doesn’t
quite work, but gives the inspiration for the construction.

Consider the free Z-module F (S×N) on the set S×N , which is the collection of all finite sums
of elements (si, ni) with si ∈ S and ni ∈ N . Let H be the subgroup generated by all elements of
the form:

(s1 + s2, n)− (s1, n)− (s2, n)

(s, n1 + n2)− (s, n1)− (s, n2)

(sr, n)− (s, rn)

for elements s, s1, s2 ∈ S, n, n1, n2 ∈ N , and r ∈ R.
Denote by S ⊗R N (‘S tensor N ’, where the symbol ⊗ is typeset by ‘otimes’) the quotient of

F (S ×N) by this subgroup H. Let s ⊗ n be the coset of the element (s, n) in this quotient. The
group S ⊗R N is called the tensor product of S and N , elements of S ⊗R N are called tensors and
elements of the form s⊗ n are called simple tensors.

By construction, every element of the tensor product can be written as a finite sum of simple
tensors, and we have forced the relations:

(s1 + s2)⊗ n = s1 ⊗ n+ s2 ⊗ n

s⊗ (n1 + n2) = s⊗ n1 + s⊗ n2

sr ⊗ n = s⊗ rn.

We define an action of S on S ⊗R N by

s(s1 ⊗ n1 + · · ·+ sk ⊗ nk) = (ss1)⊗ n1 + · · ·+ (ssk)⊗ nk.

One has to check that this is well defined (because there is typically no unique way of writing a
tensor as a sum of simple tensors), but that follows by construction.

Finally, one can show that this action makes S ⊗R N into an S module. For example:

(s+ s′)⊗ (si, ni) = ((s+ s′)si)⊗ ni

= (ssi + s′si)⊗ ni

= (ssi)⊗ ni + (s′si)⊗ ni

= s(si ⊗ ni) + s′(si ⊗ ni).

The remaining axioms are checked similarly.
So, we have ‘extended’ the R-module N to the S-module S ⊗R N . This is usually referred to as

extension of scalars.
Note that there is a natural R-module homomorphism i : N → S ⊗R N given by i(n) = 1 ⊗ n.

Using this homomorphism, we can show that module S ⊗R N is, in a precise sense, the ‘smallest’
S module we can make that admits a homomorphism from N . This is why this is usually referred
to as ‘extension’ to S.
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Theorem 1.1. Let R be a subring of S and let N be an R-module. Let i : N → S ⊗R N be the
R-module homomorphism i(n) = 1 ⊗ n. Suppose that L is any S-module and that ϕ : N → L
is any homomorphism of R-modules. Then, there exists a unique homomorphism of S-modules
Φ : S ⊗R N → L such that ϕ = Φ ◦ i. We express this with a diagram:

N S ⊗R N

L

i

ϕ
Φ

Conversely, if Φ : S⊗RN → L is any S-module homomorphism, ϕ = Φ◦ i : N → L is an R-module
homomorphism.

Proof. Suppose ϕ : N → L is an R-module homomorphism. There is a Z-module homomorphism
from ΦF : F (S × N) to L sending each generator (s, n) to sϕ(n) (exercise: check this is a
homomorphism). Because ϕ is an R-module homomorphism, the elements of H (the subgroup
of relations with which we mod out F (S × N)) must map to 0 under this homomorphism; for
example:

ΦF ((s1 + s2, n)− (s1, n)− (s2, n)) = ΦF (s1 + s2, n)− ΦF (s1, n)− ΦF (s2, n)

= (s1 + s2)ϕ(n)− s1ϕ(n)− s2ϕ(n)

= 0ϕ(n)

= 0.

Therefore, this homomorphism ΦF factors through the quotient F (S × N)/H = S ⊗R N . Let
Φ : S ⊗R N → L be this homomorphism, which by definition is given by Φ(s⊗ n) = sϕ(n). This is
actually a homomorphism of S-modules:

Φ(s′(s1 ⊗ n1) + (s2 ⊗ n2)) = Φ(s′(s1 ⊗ n1)) + Φ(s2 ⊗ n2)

= Φ((s′s1)⊗ n1) + Φ(s2 ⊗ n2)

= (s′s1)ϕ(n1) + s2ϕ(n2)

= s′(s1ϕ(n1)) + s2ϕ(n2)

= s′Φ(s1 ⊗ n1) + Φ(s2 ⊗ n2).

This homomorphism is unique because S ⊗R N is generated as an S-module by the elements
1⊗ n, and Φ(1⊗ n) = ϕ(n), so Φ is uniquely determined by ϕ.

The converse statement is automatic. □

The previous theorem is called a ‘universal property’ and controls the relationship between R-
modules and S-modules.

Corollary 1.2. If i : N → S ⊗RN is the homomorphism in the previous theorem, then N/ ker i is
the largest quotient of N that can be embedded in any S-module. In particular, if i is not injective,
then N cannot be embedded in any S-module. (Here: ‘embedding’ means ‘mapped injectively to’.)

Proof. By the First Isomorphism Theorem, N/ ker i is mapped injectively to S⊗RN . If ϕ : N → L
is any homomorphism mapping the quotient N/ kerϕ injectively to L, then this factors through
the map i : N → S ⊗R N . Because ker i must be mapped to 0 by ϕ, this implies that ker i ⊂ kerϕ.
Therefore, N/ ker i is the largest quotient that can map injectively to an S-module L. □

Example 1.3. If R is any ring andN is any R-module, then R⊗RN ∼= N because we could consider
ϕ : N → N the identity map. Then, the diagram in the previous theorem says ϕ = Φ ◦ i : N → N ,
so i : N → R⊗R N is a bijective homomorphism with inverse Φ, so is an isomorphism.
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In particular, if R = Z and A is any abelian group, then Z⊗Z A ∼= A.

Example 1.4. Let R = Z. We just showed that Z ⊗Z A ∼= A. What about if S = Q? What is
Q⊗Z A? First observe that s⊗ 0 = s⊗ (0 + 0) = s⊗ 0 + s⊗ 0, so subtracting one s⊗ 0 from both
sides shows that s⊗ 0 = 0. (This is true in any tensor product!)

Now suppose A is a finite abelian group with |A| = n. By Lagrange’s Theorem, this means
na = 0 for any a ∈ A. Let q⊗ a ∈ Q⊗Z A be any simple tensor. Because q = (q/n)n, we can write

q ⊗ a = ((q/n)n)⊗ a = q/n⊗ na = q/n⊗ 0 = 0

so any simple tensor is just equal to 0. Because every element of Q⊗ZA is a sum of simple tensors,
this implies that Q⊗Z A = 0 for all finite abelian groups.

Now we define tensor products in general, where we just replace S with any R-module. Let
M and N be two R-modules. Because R is commutative, let us define a right action on M as
mr = rm. (As in, the right action is the same as the left action.) This makes M into an R-module
with a right action: m(rs) = (rs)m = (sr)m = s(rm) = (rm)s = m(rs).

Consider again the free Z module F (M ×N) and H the subgroup generated by

(m1 +m2, n)− (m1, n)− (m2, n)

(m,n1 + n2)− (m,n1)− (m,n2)

(mr, n)− (m, rn)

for elements m,m1,m2 ∈ S, n, n1, n2 ∈ N , and r ∈ R and define M ⊗RN = F (M ×N)/H. Again,
the elements are called tensors, and the elements of the form m⊗ n are called simple tensors. By
defining the action of R to be r(m⊗ n) = (rm)⊗ n = (mr)⊗ n = m⊗ (rn), we see that M ⊗R N
is an R-module.

Definition 1.5. Suppose R is commutative and M,N are R-modules. Define the right action on
M as above. For any abelian group L, a map ϕ :M ×N → L is called balanced if

ϕ(m1 +m2, n) = ϕ(m1, n) + ϕ(m2, n)

ϕ(m,n1 + n2) = ϕ(m,n1) + ϕ(m,n2)

ϕ(m, rn) = ϕ(mr, n).

If L is anR-module, the map ϕ is calledR-bilinear if it is balanced and ϕ(mr, n) = ϕ(m, rn) = rϕ(m,n).

Exactly as before for S ⊗R N , we have a universal property. The map i : M × N → M ⊗R N
given by i(m,n) = m ⊗ n is R-bilinear, and given any R-bilinear map ϕ : M ×N → L, there is a
unique map Φ :M ⊗R N → L such that ϕ = Φ ◦ i:

M ×N M ⊗R N

L

i

ϕ
Φ

Time for examples!

Example 1.6. The tensor product Z2 ⊗Z Z3 is 0 because 3a = a for any a ∈ Z2, so

a⊗ b = 3a⊗ b = a⊗ 3b = a⊗ 0 = 0.

In general, Zn ⊗Z Zm
∼= Zd where d = gcd(n,m): let a ⊗ b be any element in the tensor

product. Then, a ⊗ b = a ⊗ (b1) = ab ⊗ 1 = (ab)(1 ⊗ 1), so any tensor is a multiple of
1 ⊗ 1, so Zn ⊗Z Zm is cyclic. Furthermore, since d = xn + ym for some integers x, y, we have
d(1⊗1) = (xn+ym)(1⊗1) = xn(1⊗1)+ym(1⊗1) = x(n⊗1)+y(1⊗m) = 0+0 = 0, so the order
of this element 1⊗ 1 is a divisor of d. By considering the map Zn ×Zm → Zd mapping (a, b) → ab



4 DECEMBER 5 NOTES

(mod d) which is Z-bilinear, it factors through the tensor product and the induced map sends 1⊗1
to 1, which has order d, so 1 ⊗ 1 has order at least d. Therefore, 1 ⊗ 1 has order exactly d and
Zn ⊗Z Zm

∼= Zd.

Example 1.7. Let R be a ring and I an ideal and N an R-module. There is an N -submodule IN
defined to be all finite sums of products of elements in I with elements in N .

In this case, R/I ⊗R N ∼= N/IN . Because 1 ∈ R/I (the image of 1 in R) generates R/I as
an R-module, the elements 1 ⊗ n generate R/I ⊗R N . There is an R-module homomorphism
N → R/I ⊗R N sending n 7→ 1 ⊗ n, which is surjective because the elements 1 ⊗ n generate the
tensor product. The kernel must contain IN because, if aini ∈ IN (ai ∈ I, ni ∈ N), this maps to
1⊗ aini = ai ⊗ni = 0 because ai = 0 ∈ R/I. This gives a surjective map N/IN → R/I ⊗RN , and
we must show it is an isomorphism. But this follows because it has an inverse: R/I⊗RN → N/IN
given by (r, n) 7→ rn can be checked to be the inverse of this map.

Remark 1.8. The previous example is a special case of our first construction of S ⊗R N , where
S = R/I (because there is a natural homomorphism f : R → R/I). So, this tensor product
R/I ⊗R N is an R-module, but it is also an R/I-module as constructed above. In general, if R,S
are commutative rings and M is both an R and an S module (called an R,S-bimodule) and N is
an R-module, then M ⊗R N will also be an R,S-bimodule.

A few other properties of the tensor product (we ran out of time for these in class, but take a
look if you wish):

Theorem 1.9. If ϕ :M →M ′ and ψ : N → N ′ are R-module homomorphisms, then

ϕ⊗ ψ :M ⊗R N →M ′ ⊗R N
′

given by (ϕ⊗ ψ)(m⊗ n) = ϕ(m)⊗ ϕ(n) is an R-module homomorphism.

Theorem 1.10. If M,N,L are R-modules, then (M ⊗R N)⊗R L ∼=M ⊗R (N ⊗R L).

Theorem 1.11. Let M,M ′ and N,N ′ be R-modules. Then,

(M ⊕M ′)⊗R N ∼= (M ⊗R N)⊕ (M ′ ⊗R N)

M ⊗R (N ⊕N ′) ∼= (M ⊗R N)⊕ (M ⊗R N
′).

Corollary 1.12. If S is a ring and f : R → S a homomorphism so that S is an R-module via
rs = f(r)s, then S⊗R

∼= R and S ⊗R R
n ∼= Sn.

Corollary 1.13. For a ring R, Rs ⊗R Rt ∼= Rst. This says that the tensor product of two free
modules of finite rank is again free.
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