DECEMBER 5 NOTES

1. 10.4: TENSOR ProbpuUCTS

Construction. Suppose that R is a subring of S, and that N is an R-module. Then, S x N is an
abelian group. If N were to be an S module, we would have to define an action S x N — N where
(s,n) — sn satisfying that (s; + s2)n = s1n + san and the rest of the module axioms. This doesn’t
quite work, but gives the inspiration for the construction.

Consider the free Z-module F'(S x N) on the set S x N, which is the collection of all finite sums
of elements (s;,n;) with s; € S and n; € N. Let H be the subgroup generated by all elements of
the form:

(s1+ 82,n) — (s1,m) — (82, 1)
(s,n1 4 n2) — (s,n1) — (s,n2)
(sr,n) — (s,rn)
for elements s, s1,s9 € S, n,ny,ne € N, and r € R.

Denote by S @ N (‘S tensor N’, where the symbol ® is typeset by ‘otimes’) the quotient of
F(S x N) by this subgroup H. Let s ® n be the coset of the element (s,n) in this quotient. The
group S ®p N is called the tensor product of S and N, elements of S ®r N are called tensors and
elements of the form s ® n are called simple tensors.

By construction, every element of the tensor product can be written as a finite sum of simple
tensors, and we have forced the relations:

(51+82)@n=51@n+s58n
$®(ny+ng) =s®n1 +sK® ng

Sre®n=sQrn.

We define an action of S on S ®r N by
s(s1@n1+ -+ s, @ng) = (ss1) @n1 + -+ + (s8g) @ ng.

One has to check that this is well defined (because there is typically no unique way of writing a
tensor as a sum of simple tensors), but that follows by construction.
Finally, one can show that this action makes S ®p N into an S module. For example:

(s+5) @ (si,mi) = (s + 8')si) @
= (ss; + 8'si) @ ny
= (ss;) ®@n; + (s's;) @n;
= s(si @ n;) + §'(si @ n;).
The remaining axioms are checked similarly.
So, we have ‘extended’ the R-module N to the S-module S ® g N. This is usually referred to as
extension of scalars.
Note that there is a natural R-module homomorphism i : N — S ®g N given by i(n) = 1 @ n.
Using this homomorphism, we can show that module S ®r IV is, in a precise sense, the ‘smallest’

S module we can make that admits a homomorphism from N. This is why this is usually referred

to as ‘extension’ to S.
1
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Theorem 1.1. Let R be a subring of S and let N be an R-module. Leti: N — S ®pr N be the
R-module homomorphism i(n) = 1 ® n. Suppose that L is any S-module and that ¢ : N — L
is any homomorphism of R-modules. Then, there exists a unique homomorphism of S-modules
:S®r N — L such that 9 = ®oi. We express this with a diagram:

N 5 S®pN

Xf

Conversely, if ® : S®r N — L is any S-module homomorphism, ¢ = ®oi: N — L is an R-module
homomorphism.

Proof. Suppose ¢ : N — L is an R-module homomorphism. There is a Z-module homomorphism
from ®p : F(S x N) to L sending each generator (s,n) to s¢(n) (exercise: check this is a
homomorphism). Because ¢ is an R-module homomorphism, the elements of H (the subgroup
of relations with which we mod out F(S x N)) must map to 0 under this homomorphism; for
example:

Pp((s1+s2,n) = (51,1) — (s2,1)) = Pp(s1 + s2,n) — Pp(s1,n) — Pp(s2,n)
= (814 52)8(n) — s16(n) — s20(n)
= 0¢(n)
=0.
Therefore, this homomorphism ®p factors through the quotient F(S x N)/H = S @ N. Let
®: S®r N — L be this homomorphism, which by definition is given by ®(s ® n) = s¢(n). This is
actually a homomorphism of S-modules:
B(s'(s1 @ n1) + (s2 @ n2)) = (s’ (51 @ n1)) + P52 @ N2)
P((s's1) ®ny) + D(s2 @ na)
= (s's1)¢(n1) + s20(n2)
s'(s16(n1)) + s26(n2)
=5 (I)(Sl &® nl) + CD(SQ ® ng).

This homomorphism is unique because S ®pr N is generated as an S-module by the elements
1®n, and ®(1 ® n) = ¢(n), so ® is uniquely determined by ¢.
The converse statement is automatic. g

The previous theorem is called a ‘universal property’ and controls the relationship between R-
modules and S-modules.

Corollary 1.2. If i : N — S®pg N is the homomorphism in the previous theorem, then N/keri is
the largest quotient of NV that can be embedded in any S-module. In particular, if 4 is not injective,
then N cannot be embedded in any S-module. (Here: ‘embedding’ means ‘mapped injectively to’.)

Proof. By the First Isomorphism Theorem, N/ ker i is mapped injectively to S@g N. If ¢ : N — L
is any homomorphism mapping the quotient N/ker ¢ injectively to L, then this factors through
the map ¢ : N — S ®pr N. Because keri must be mapped to 0 by ¢, this implies that ker¢ C ker ¢.
Therefore, N/ keri is the largest quotient that can map injectively to an S-module L. g

Example 1.3. If R is any ring and NN is any R-module, then R®r N = N because we could consider
¢ : N — N the identity map. Then, the diagram in the previous theorem says ¢ = ®oi: N — N,
soi: N — R®pr N is a bijective homomorphism with inverse ®, so is an isomorphism.
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In particular, if R = Z and A is any abelian group, then Z ®7 A = A.

Example 1.4. Let R = Z. We just showed that Z ®7 A = A. What about if S = Q7 What is
Q ®z A? First observe that s 0=s® (0+0) = s® 0+ s ® 0, so subtracting one s ® 0 from both
sides shows that s ® 0 = 0. (This is true in any tensor product!)

Now suppose A is a finite abelian group with |A| = n. By Lagrange’s Theorem, this means
na =0 for any a € A. Let ¢®a € Q ®z A be any simple tensor. Because ¢ = (¢/n)n, we can write

ga=((¢g/n)n)®a=q/n®@na=q/nx0=0

so any simple tensor is just equal to 0. Because every element of Q ®z A is a sum of simple tensors,
this implies that Q ®z A = 0 for all finite abelian groups.

Now we define tensor products in general, where we just replace S with any R-module. Let
M and N be two R-modules. Because R is commutative, let us define a right action on M as
mr = rm. (As in, the right action is the same as the left action.) This makes M into an R-module
with a right action: m(rs) = (rs)m = (sr)m = s(rm) = (rm)s = m(rs).

Consider again the free Z module F'(M x N) and H the subgroup generated by

(m1 +ma,n) — (m1,n) — (M2, n)
(m7 ni + TLQ) - (m7n1) - (m7n2)
(mr,n) — (m,rn)
for elements m, my,mg € S, n,ny,ny € N, and r € R and define M @ g N = F(M x N)/H. Again,
the elements are called tensors, and the elements of the form m ® n are called simple tensors. By
defining the action of R to be r(m ®@n) = (rm) ® n = (mr) @ n = m ® (rn), we see that M @r N
is an R-module.

Definition 1.5. Suppose R is commutative and M, N are R-modules. Define the right action on
M as above. For any abelian group L, a map ¢ : M x N — L is called balanced if

¢(m1 4+ ma,n) = ¢(m1,n) + ¢(ma,n)
p(m,n1 +n2) = ¢(m,n1) + ¢(m, nz)
P(m,rn) = ¢(mr,n).
If L is an R-module, the map ¢ is called R-bilinear if it is balanced and ¢(mr,n) = ¢(m,rn) = r¢(m, n).

Exactly as before for S ® g N, we have a universal property. The map i : M x N - M ®r N
given by i(m,n) = m ® n is R-bilinear, and given any R-bilinear map ¢ : M x N — L, there is a
unique map ® : M ® g N — L such that ¢ = ® o :

MxN —“5 M®@rN

Xf’

Time for examples!

Example 1.6. The tensor product Zs ®z Zs is 0 because 3a = a for any a € Zs, so
a®b=3a®b=a®3b=ax0=0.

In general, Z, ®z Z,, = Zq where d = ged(n,m): let a ® b be any element in the tensor
product. Then, a ® b = a® (b1) = ab® 1 = (ab)(1 ® 1), so any tensor is a multiple of
1® 1, so Z,, Qg Zn, is cyclic. Furthermore, since d = zn 4+ ym for some integers z,y, we have
d1®1l) = (zn+ym)(1®1) =zn(1®1)+ym(1®1) =z(n®1)+y(l®m) = 04+0 = 0, so the order
of this element 1 ® 1 is a divisor of d. By considering the map Z,, X Z,, — Z4 mapping (a,b) — ab
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(mod d) which is Z-bilinear, it factors through the tensor product and the induced map sends 1® 1
to 1, which has order d, so 1 ® 1 has order at least d. Therefore, 1 ® 1 has order exactly d and
Ly Rz Loy = 7.

Example 1.7. Let R be a ring and I an ideal and N an R-module. There is an N-submodule IN
defined to be all finite sums of products of elements in I with elements in V.

In this case, R/I g N = N/IN. Because 1 € R/I (the image of 1 in R) generates R/I as
an R-module, the elements 1 ® n generate R/I @ g N. There is an R-module homomorphism
N — R/I ®r N sending n — 1 ® n, which is surjective because the elements 1 ® n generate the
tensor product. The kernel must contain IN because, if a;n; € IN (a; € I,n; € N), this maps to
1®a;n; = a; ®n; = 0 because a; = 0 € R/I. This gives a surjective map N/IN — R/I ®@r N, and
we must show it is an isomorphism. But this follows because it has an inverse: R/I®@r N — N/IN
given by (r,n) — rn can be checked to be the inverse of this map.

Remark 1.8. The previous example is a special case of our first construction of S ® g N, where
S = R/I (because there is a natural homomorphism f : R — R/I). So, this tensor product
R/I @i N is an R-module, but it is also an R/I-module as constructed above. In general, if R, S
are commutative rings and M is both an R and an S module (called an R, S-bimodule) and N is
an R-module, then M ®pr N will also be an R, S-bimodule.

A few other properties of the tensor product (we ran out of time for these in class, but take a
look if you wish):

Theorem 1.9. If ¢ : M — M’ and ) : N — N’ are R-module homomorphisms, then
p@¢: M@r N — M ®r N’
given by (¢ @ Y)(m @n) = ¢p(m) @ ¢(n) is an R-module homomorphism.
Theorem 1.10. If M, N, L are R-modules, then (M @r N) g L = M ®r (N ®r L).
Theorem 1.11. Let M, M’ and N, N’ be R-modules. Then,
(MeM)®r N = (M®rN)® (M @5 N)
M®@r(N®&N)=(MerN)& (MerN).

Corollary 1.12. If S is a ring and f : R — S a homomorphism so that S is an R-module via
rs = f(T‘)S, then S®R =~ R and S®R R™ =~ ™,

Corollary 1.13. For a ring R, R* ®r R' = R®'. This says that the tensor product of two free
modules of finite rank is again free.
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