
NOVEMBER 30 NOTES

1. 10.3: Generation, Direct Sums, and Free Modules

Reminder from last time:

Definition 1.1. Let R be a ring. A left R-module or just an R-module is a set M together
with

(1) A binary operation + on M for which M is an abelian group
(2) An action of R on M , denoted by rm, satisfying, for all r, s ∈ R, m,n ∈ M

(a) (r + s)m = rm+ sm
(b) (rs)m = r(sm)
(c) r(m+ n) = rm+ rn
(d) If r has identity, 1m = m.

Now, new stuff: Throughout this section, R will be a ring with 1.

Definition 1.2. Let M be an R-module and let N1, . . . , Nn be submodules of M .

(1) The sum of N1, . . . , Nn is the set

N1 + · · ·+Nn = {a1 + · · ·+ an | ai ∈ Ni}.

(2) For any subset A of M , let

RA = {r1a1 + · · ·+ rmam | ri ∈ R, ai ∈ A,m ∈ Z+}.

If A = {a} is one element, then RA = {ra | r ∈ R}.
If A = {a1, . . . , ak} is finite, we will write

RA = Ra1 + · · ·+Rak.

We call RA the submodule of M generated by A. If N is a submodule of M such
that N = RA, we say that N is generated by A.

(3) A submodule N of M is finitely generated if N = RA for some finite set A ⊂ M .
(4) A submodule N of M is cyclic if N = Ra for some a ∈ M .

Example 1.3. Let R = Z and M be an R-module, which is just an abelian group. If a ∈ M , then
Za = {na | n ∈ Z} = ⟨a⟩ ≤ M .

Example 1.4. Let R be a ring and M = R. Then, R is finitely generated and cyclic: R = R1. If
I = (a) is a principal ideal, it is also cyclic: I = Ra, and in fact the cyclic submodules of R are
exactly the prinicpal ideals.

If M = Rn is the free R-module of rank n, let ei = (0, . . . , 0, 1, 0 . . . , 0) (the ‘standard basis
vector’ with 1 in the ith place). Then, M = Re1 + · · ·+Ren.

Definition 1.5. Let M1, . . . ,Mk be R-modules. The direct product of these modules is

M1 × · · · ×Mk = {(m1, . . . ,mk) | mi ∈ Mi}

(just the direct product of the abelian groups) where the R-action is defined component-wise.
This is often called the direct sum and denoted M1 ⊕ · · · ⊕Mk.
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We always have a homomorphism of R modules

π : N1 × · · · ×Nk = N1 + · · ·+Nk

defined by π(a1, . . . , ak) = a1 + · · · + ak. This is surjective by definition, but is not necessarily
injective. By definition of injectivity, we have the folllowing:

Proposition 1.6. The map π defined above is an isomorphism if and only if every x ∈ N1+· · ·+Nk

can be written uniquely as x = a1 + · · ·+ ak for ai ∈ Ni.

It turns out that this is equivalent to the following (which you can prove as an exercise; this is
just another way of stating what it means for the sum to be unique):

Proposition 1.7. The map π is an isomorphism if and only if Nj∩(N1+. . . Nj−1+Nj+1+· · ·+Nk) = 0
for all j ∈ {1, . . . , k}.

Definition 1.8. If M = N1 + · · ·+Nk
∼= N1 × · · · ×Nk, then we use the direct sum notation and

write M = N1 ⊕ · · · ⊕Nk.

Definition 1.9. An R module F is free on a subset A ⊂ F if every nonzero element x ∈ F can
be written uniquely as x = r1a1 + · · ·+ rnan for elements ri ∈ R, ai ∈ A. We say that A is a basis
for F in this setting.

If A = {a1, . . . , ak} is a nonempty finite set, then the free module on the set A is the module
F (A) = Ra1 ⊕ · · · ⊕Rak.
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If R = Z, we call this module the free abelian group on A.

2. 10.4: Tensor Products

We aim to define tensor products of modules, which, roughly speaking, allow us to define
‘products’ mn of elements m ∈ M and n ∈ N . Your book does this in general, but we will assume
that R is commutative with identity to make the notation/definitions simpler.

First, we construct a special case as motivation:

Question 2.1. If R is a subring of another ring S that is commutative with identity, then given
any S-module M , it is automatically an R-module. More generally, if f : R → S is any ring
homomorphism, then M is an R-module via rm := f(r)m.

In this set-up, we say that S is an extension of R, and M is an R-module by restriction of scalars
(we restrict the action to just elements of R, instead of all elements of S).

Can we go the other way? Meaning, if we have an R-module N , can we consider it as an S-
module? Or can we modify it/enlarge it to be an S-module? This is what the tensor product will
do.

Construction. Suppose that R is a subring of S, and that N is an R-module. Then, S ×N is an
abelian group. If N were to be an S module, we would have to define an action S×N → N where
(s, n) 7→ sn satisfying that (s1 + s2)n = s1n+ s2n and the rest of the module axioms. This doesn’t
quite work, but gives the inspiration for the construction.

Consider the free Z-module F (S×N) on the set S×N , which is the collection of all finite sums
of elements (si, ni) with si ∈ S and ni ∈ N . Let H be the subgroup generated by all elements of
the form:

(s1 + s2, n)− (s1, n)− (s2, n)

(s, n1 + n2)− (s, n1)− (s, n2)

(sr, n)− (s, rn)

for elements s, s1, s2 ∈ S, n, n1, n2 ∈ N , and r ∈ R.

1One can generalize to infinite sets–see the book for more.
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Denote by S ⊗R N (‘S tensor N ’, where the symbol ⊗ is typeset by ‘otimes’) the quotient of
F (S ×N) by this subgroup H. Let s ⊗ n be the coset of the element (s, n) in this quotient. The
group S ⊗R N is called the tensor product of S and N , elements of S ⊗R N are called tensors and
elements of the form s⊗ n are called simple tensors.

By construction, every element of the tensor product can be written as a finite sum of simple
tensors, and we have forced the relations:

(s1 + s2)⊗ n = s1 ⊗ n+ s2 ⊗ n

s⊗ (n1 + n2) = s⊗ n1 + s⊗ n2

sr ⊗ n = s⊗ rn.

We define an action of S on S ⊗R N by

s(s1 ⊗ n1 + · · ·+ sk ⊗ nk) = (ss1)⊗ n1 + · · ·+ (ssk)⊗ nk.

One has to check that this is well defined (because there is typically no unique way of writing a
tensor as a sum of simple tensors), but that follows by construction.

Finally, one can show that this action makes S ⊗R N into an S module. For example:

(s+ s′)⊗ (si, ni) = ((s+ s′)si)⊗ ni

= (ssi + s′si)⊗ ni

= (ssi)⊗ ni + (s′si)⊗ ni

= s(si ⊗ ni) + s′(si ⊗ ni).

The remaining axioms are checked similarly.
So, we have ‘extended’ the R-module N to the S-module S ⊗R N . This is usually referred to as

extension of scalars.
Note that there is a natural R-module homomorphism i : N → S ⊗R N given by i(n) = 1 ⊗ n.

Using this homomorphism, we can show that module S ⊗R N is, in a precise sense, the ‘smallest’
S module we can make that admits a homomorphism from N . This is why this is usually referred
to as ‘extension’ to S. We’ll introduce this as a theorem next time. But first, an example!

Example 2.2. What is Q ⊗Z A, where A is an abelian group? We’ll do the finite abelian group
case today. First observe that s ⊗ 0 = s ⊗ (0 + 0) = s ⊗ 0 + s ⊗ 0, so subtracting one s ⊗ 0 from
both sides shows that s⊗ 0 = 0. (This is true in any tensor product!)

Now suppose A is a finite abelian group with |A| = n. By Lagrange’s Theorem, this means
na = 0 for any a ∈ A. Let q⊗ a ∈ Q⊗Z A be any simple tensor. Because q = (q/n)n, we can write

q ⊗ a = ((q/n)n)⊗ a = q/n⊗ na = q/n⊗ 0 = 0

so any simple tensor is just equal to 0. Because every element of Q⊗ZA is a sum of simple tensors,
this implies that Q⊗Z A = 0 for all finite abelian groups.
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