NOVEMBER 30 NOTES

1. 10.3: Generation, Direct Sums, and Free Modules

Reminder from last time:
Definition 1.1. Let R be a ring. A left R-module or just an R-module is a set M together with
(1) A binary operation + on M for which M is an abelian group
(2) An action of R on M, denoted by $r m$, satisfying, for all $r, s \in R, m, n \in M$
(a) $(r+s) m=r m+s m$
(b) $(r s) m=r(s m)$
(c) $r(m+n)=r m+r n$
(d) If r has identity, $1 m=m$.

Now, new stuff: Throughout this section, R will be a ring with 1 .
Definition 1.2. Let M be an R-module and let N_{1}, \ldots, N_{n} be submodules of M.
(1) The sum of N_{1}, \ldots, N_{n} is the set

$$
N_{1}+\cdots+N_{n}=\left\{a_{1}+\cdots+a_{n} \mid a_{i} \in N_{i}\right\} .
$$

(2) For any subset A of M, let

$$
R A=\left\{r_{1} a_{1}+\cdots+r_{m} a_{m} \mid r_{i} \in R, a_{i} \in A, m \in \mathbb{Z}^{+}\right\} .
$$

If $A=\{a\}$ is one element, then $R A=\{r a \mid r \in R\}$.
If $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is finite, we will write

$$
R A=R a_{1}+\cdots+R a_{k} .
$$

We call $R A$ the submodule of M generated by A. If N is a submodule of M such that $N=R A$, we say that N is generated by A.
(3) A submodule N of M is finitely generated if $N=R A$ for some finite set $A \subset M$.
(4) A submodule N of M is cyclic if $N=R a$ for some $a \in M$.

Example 1.3. Let $R=\mathbb{Z}$ and M be an R-module, which is just an abelian group. If $a \in M$, then $\mathbb{Z} a=\{n a \mid n \in \mathbb{Z}\}=\langle a\rangle \leq M$.

Example 1.4. Let R be a ring and $M=R$. Then, R is finitely generated and cyclic: $R=R 1$. If $I=(a)$ is a principal ideal, it is also cyclic: $I=R a$, and in fact the cyclic submodules of R are exactly the prinicpal ideals.

If $M=R^{n}$ is the free R-module of rank n, let $e_{i}=(0, \ldots, 0,1,0 \ldots, 0)$ (the 'standard basis vector' with 1 in the i th place). Then, $M=R e_{1}+\cdots+R e_{n}$.

Definition 1.5. Let M_{1}, \ldots, M_{k} be R-modules. The direct product of these modules is

$$
M_{1} \times \cdots \times M_{k}=\left\{\left(m_{1}, \ldots, m_{k}\right) \mid m_{i} \in M_{i}\right\}
$$

(just the direct product of the abelian groups) where the R-action is defined component-wise.
This is often called the direct sum and denoted $M_{1} \oplus \cdots \oplus M_{k}$.

We always have a homomorphism of R modules

$$
\pi: N_{1} \times \cdots \times N_{k}=N_{1}+\cdots+N_{k}
$$

defined by $\pi\left(a_{1}, \ldots, a_{k}\right)=a_{1}+\cdots+a_{k}$. This is surjective by definition, but is not necessarily injective. By definition of injectivity, we have the folllowing:

Proposition 1.6. The map π defined above is an isomorphism if and only if every $x \in N_{1}+\cdots+N_{k}$ can be written uniquely as $x=a_{1}+\cdots+a_{k}$ for $a_{i} \in N_{i}$.

It turns out that this is equivalent to the following (which you can prove as an exercise; this is just another way of stating what it means for the sum to be unique):

Proposition 1.7. The map π is an isomorphism if and only if $N_{j} \cap\left(N_{1}+\ldots N_{j-1}+N_{j+1}+\cdots+N_{k}\right)=0$ for all $j \in\{1, \ldots, k\}$.

Definition 1.8. If $M=N_{1}+\cdots+N_{k} \cong N_{1} \times \cdots \times N_{k}$, then we use the direct sum notation and write $M=N_{1} \oplus \cdots \oplus N_{k}$.

Definition 1.9. An R module F is free on a subset $A \subset F$ if every nonzero element $x \in F$ can be written uniquely as $x=r_{1} a_{1}+\cdots+r_{n} a_{n}$ for elements $r_{i} \in R, a_{i} \in A$. We say that A is a basis for F in this setting.

If $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a nonempty finite set, then the free module on the set A is the module $F(A)=R a_{1} \oplus \cdots \oplus R a_{k} .{ }^{1}$

If $R=\mathbb{Z}$, we call this module the free abelian group on A.

2. 10.4: Tensor Products

We aim to define tensor products of modules, which, roughly speaking, allow us to define 'products' $m n$ of elements $m \in M$ and $n \in N$. Your book does this in general, but we will assume that R is commutative with identity to make the notation/definitions simpler.

First, we construct a special case as motivation:
Question 2.1. If R is a subring of another ring S that is commutative with identity, then given any S-module M, it is automatically an R-module. More generally, if $f: R \rightarrow S$ is any ring homomorphism, then M is an R-module via $r m:=f(r) m$.

In this set-up, we say that S is an extension of R, and M is an R-module by restriction of scalars (we restrict the action to just elements of R, instead of all elements of S).

Can we go the other way? Meaning, if we have an R-module N, can we consider it as an S module? Or can we modify it/enlarge it to be an S-module? This is what the tensor product will do.

Construction. Suppose that R is a subring of S, and that N is an R-module. Then, $S \times N$ is an abelian group. If N were to be an S module, we would have to define an action $S \times N \rightarrow N$ where $(s, n) \mapsto s n$ satisfying that $\left(s_{1}+s_{2}\right) n=s_{1} n+s_{2} n$ and the rest of the module axioms. This doesn't quite work, but gives the inspiration for the construction.

Consider the free \mathbb{Z}-module $F(S \times N)$ on the set $S \times N$, which is the collection of all finite sums of elements $\left(s_{i}, n_{i}\right)$ with $s_{i} \in S$ and $n_{i} \in N$. Let H be the subgroup generated by all elements of the form:

$$
\begin{gathered}
\left(s_{1}+s_{2}, n\right)-\left(s_{1}, n\right)-\left(s_{2}, n\right) \\
\left(s, n_{1}+n_{2}\right)-\left(s, n_{1}\right)-\left(s, n_{2}\right) \\
(s r, n)-(s, r n)
\end{gathered}
$$

for elements $s, s_{1}, s_{2} \in S, n, n_{1}, n_{2} \in N$, and $r \in R$.

[^0]Denote by $S \otimes_{R} N$ (' S tensor N^{\prime}, where the symbol \otimes is typeset by 'otimes') the quotient of $F(S \times N)$ by this subgroup H. Let $s \otimes n$ be the coset of the element (s, n) in this quotient. The group $S \otimes_{R} N$ is called the tensor product of S and N, elements of $S \otimes_{R} N$ are called tensors and elements of the form $s \otimes n$ are called simple tensors.

By construction, every element of the tensor product can be written as a finite sum of simple tensors, and we have forced the relations:

$$
\begin{gathered}
\left(s_{1}+s_{2}\right) \otimes n=s_{1} \otimes n+s_{2} \otimes n \\
s \otimes\left(n_{1}+n_{2}\right)=s \otimes n_{1}+s \otimes n_{2} \\
s r \otimes n=s \otimes r n .
\end{gathered}
$$

We define an action of S on $S \otimes_{R} N$ by

$$
s\left(s_{1} \otimes n_{1}+\cdots+s_{k} \otimes n_{k}\right)=\left(s s_{1}\right) \otimes n_{1}+\cdots+\left(s s_{k}\right) \otimes n_{k} .
$$

One has to check that this is well defined (because there is typically no unique way of writing a tensor as a sum of simple tensors), but that follows by construction.

Finally, one can show that this action makes $S \otimes_{R} N$ into an S module. For example:

$$
\begin{aligned}
\left(s+s^{\prime}\right) \otimes\left(s_{i}, n_{i}\right) & =\left(\left(s+s^{\prime}\right) s_{i}\right) \otimes n_{i} \\
& =\left(s s_{i}+s^{\prime} s_{i}\right) \otimes n_{i} \\
& =\left(s s_{i}\right) \otimes n_{i}+\left(s^{\prime} s_{i}\right) \otimes n_{i} \\
& =s\left(s_{i} \otimes n_{i}\right)+s^{\prime}\left(s_{i} \otimes n_{i}\right) .
\end{aligned}
$$

The remaining axioms are checked similarly.
So, we have 'extended' the R-module N to the S-module $S \otimes_{R} N$. This is usually referred to as extension of scalars.

Note that there is a natural R-module homomorphism $i: N \rightarrow S \otimes_{R} N$ given by $i(n)=1 \otimes n$. Using this homomorphism, we can show that module $S \otimes_{R} N$ is, in a precise sense, the 'smallest' S module we can make that admits a homomorphism from N. This is why this is usually referred to as 'extension' to S. We'll introduce this as a theorem next time. But first, an example!
Example 2.2. What is $\mathbb{Q} \otimes_{\mathbb{Z}} A$, where A is an abelian group? We'll do the finite abelian group case today. First observe that $s \otimes 0=s \otimes(0+0)=s \otimes 0+s \otimes 0$, so subtracting one $s \otimes 0$ from both sides shows that $s \otimes 0=0$. (This is true in any tensor product!)

Now suppose A is a finite abelian group with $|A|=n$. By Lagrange's Theorem, this means $n a=0$ for any $a \in A$. Let $q \otimes a \in \mathbb{Q} \otimes_{\mathbb{Z}} A$ be any simple tensor. Because $q=(q / n) n$, we can write

$$
q \otimes a=((q / n) n) \otimes a=q / n \otimes n a=q / n \otimes 0=0
$$

so any simple tensor is just equal to 0 . Because every element of $\mathbb{Q} \otimes_{\mathbb{Z}} A$ is a sum of simple tensors, this implies that $\mathbb{Q} \otimes_{\mathbb{Z}} A=0$ for all finite abelian groups.

[^0]: ${ }^{1}$ One can generalize to infinite sets-see the book for more.

