
NOVEMBER 28 NOTES

1. 10.1: Introduction to Modules

Reminder. If G was a group and A was a set, we said that G acted on A if there was a map
G×A→ A such that (g, a) 7→ g · a satisfying:

(1) 1 · a = a and
(2) g · (h · a) = (gh) · a.

If we were to analogously define an action of a ring on a setM , we would want it to be compatible
with the ring axioms, i.e.: r(sm) = (rs)m and (r+s)m = rm+sm. This leads us to the definition of
a module. Note that the symbols rm+sm having meaning requires that there is a binary operation
+ on the set M (and commutativity of + in R would require this to be commutative as well).

Definition 1.1. Let R be a ring. A left R-module or just an R-module is a set M together
with

(1) A binary operation + on M for which M is an abelian group
(2) An action of R on M , denoted by rm, satisfying, for all r, s ∈ R, m,n ∈M

(a) (r + s)m = rm+ sm
(b) (rs)m = r(sm)
(c) r(m+ n) = rm+ rn
(d) If r has identity, 1m = m.

Remark 1.2. If R is a field F , these axioms defining a module are exactly the definition of a vector
space V . In other words, vector spaces over F are the same as modules over F .

Definition 1.3. IfM is an R-module, an R submodule ofM is a subgroup N ≤M that is closed
under the action of the ring elements, i.e. rn ∈ N for all r ∈ R,n ∈ N .

Using the criteria to be a subgroup, we have the following criteria to determine is N is a
submodule:

Proposition 1.4. If R is a ring and M is an R module, a subset N of M is a submodule of M if
and only if N ̸= ∅ and x+ ry ∈ N for all r ∈ R and x, y ∈ N .

Example 1.5. (1) If R is a ring, then R is a R-module where the action is given by multipli-
cation of ring elements.

(2) Let Rn = R×· · ·×R (n times). This is an R-module where r(a1, . . . , an) := (ra1, . . . , ran).
This is called the free module of rank n over R.

(3) If M is an R-module and S is a subring of R (with 1S = 1R), then M is also an S-module.
For example, because R is a R-module, it is also a Z-module.

Definition 1.6. If M is an R-module and I is an ideal of R, we say that I annihilates M if
am = 0 for all a ∈ I,m ∈M .

Example 1.7. If M is an R module and I annihilates M , then M is an R/I module by the action
(r + I)m := rm.

Example 1.8. Let R = Z and A be any abelian group (written additively). Then, A is a Z module
with action na = a + a + · · · + a (n times) for n > 0, na = 0 if n = 0, and na = −a + · · · + −a if
n < 0. This satisfies the axioms for A to be a Z module. Note that any module is by definition an
abelian group, so we have shown that abelian groups are the same as Z-modules.
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By definition of submodule, we also have that submodules are the same as subgroups of abelian
groups.

If there is some integer n such that na = 0 for all a ∈ A (for example, if n = |A|), then A is a
Z/nZ module.

Example 1.9. Suppose F is a field and R = F [x]. Let V be a vector space over F and T : V → V
a linear transformation. We can use T to define an action of R on V so that V is a module over
F [x]. If p(x) = anx

n + · · ·+ a1x+ a0 ∈ F [x] and v ∈ V , then we define

p(x)v = (anT
n + · · ·+ a1T + a0)v

where T i means apply the transformation T i times.
By properties of polynomials and linear transformations, this satisfies the axioms for V to be an

F [x]-module.
Note that this action depends on T ; i.e. any choice of T makes V into a F [x]-module, but these

module structures can be all different!

A special type of R-module is called an R-algebra.

Definition 1.10. Let R be a commutative ring with identity. An R-algebra is a ring A with
identity and a ring homomorphism f : R → A such that f(1R) = 1A and f(R) is contained in the
center of A.

This is a special type of R-module that happens to be a ring; the action is given by ra := f(r)a
(where f(r)a is just the multiplication of f(r)and a in the ring A).

Definition 1.11. If A and B are two R-algebra, an R-algebra homomorphism is a ring
homomorphism ϕ : A→ B such that ϕ(1A) = 1B and ϕ(ra) = rϕ(a) for all r ∈ R, a ∈ A.

Example 1.12. If R is a commutative ring, let A = R[x]. This has a natural homomorphism
f : R → A given by f(r) = r. This also satisfies that f(1R) = 1A and f(R) is contained in the
center of A so A is indeed an R-algebra.

2. 10.2: Quotient modules and module homomorphisms

Definition 2.1. Let R be a ring and let M and N be R-modules.

(1) A map ϕ :M → N is an R-module homomorphism if, for all x, y ∈M and r ∈ R:

ϕ(x+ y) = ϕ(x) + ϕ(y)

ϕ(rx) = rϕ(x)

(2) A bijective homomorphism of modules is an isomorphism.
(3) If ϕ :M → N is a homomorphism of modules, then

kerϕ = {m ∈M | ϕ(m) = 0}
ϕ(M) = imϕ = {n ∈ N | n = ϕ(m) for some m ∈M}

(4) If M and N are R-modules, define HomR(M,N) to be the set of all R-module homomor-
phisms from M to N .

Proposition 2.2. Let M , N , and L be R-modules.

(1) A map ϕ : M → N is an R-module homomorphism if and only if, for all x, y ∈ M and
r ∈ R,

ϕ(rx+ y) = rϕ(x) + ϕ(y).

(2) HomR(M,N) is an abelian group, where the group structure is given by (ϕ+ψ)(m) = ϕ(m)+ψ(m),
and if R is commutative, it is an R-module where the action is given by (rϕ)(m) = r(ϕ(m)).

(3) If ϕ ∈ HomR(L,M) and ψ ∈ HomR(M,N), then ψ ◦ ϕ ∈ HomR(L,N).



NOVEMBER 28 NOTES 3

(4) If we define multiplication as function composition, then HomR(M,M) is a ring with
identity. If R is commutative, it is an R-algebra.

Proof. For (1), the forward implication holds by definition. For the converse, if r = 1, then the
equality implies ϕ(x+ y) = ϕ(x) + ϕ(y), and if y = 0, the equality implies that ϕ(rx) = rϕ(x), so
ϕ is an R-module homomorphism.

For (2), we leave checking that HomR(M,N) is an abelian group as an exercise. To show it
is an R-module, since we have defined the action, we just need to verify that rϕ as defined is an
R-module homomorphism. This holds because:

(rϕ)(ax+ y) = r(ϕ(ax+ y)) by definition

= r(aϕ(x) + ϕ(y)) because ϕ is a homomorphism

= raϕ(x) + rϕ(y) because N is a module

= arϕ(x) + rϕ(y) because R is commutative

= a(rϕ)(x) + (rϕ)(y)

so this is an R-module homomorphism.
For (3), we need to show that ψ ◦ ϕ is an R-module homomoprhism. Using (1), this is straight-

forward from the definition, so we leave this as an exercise.
For (4), one checks that HomR(M,M) is a ring with identity equal to the identity function–this

is an exercise. To show it is an algebra, let f : R→ HomR(M,M) be the function sending r to the
homomorphism that is multiplication by r (which we still denote by r), and define ϕr := rϕ for all
r ∈ R and ϕ ∈ HomR(M,M). This makes HomR(M,M) an R-algebra. □

Definition 2.3. The endomorphism ring of an R-module is the ring EndR(M) = HomR(M,M).
Elements of this ring are called endomorphisms.

Finally, note that modules are abelian groups, so if N is a submodule of M , then N is normal in
M . And, if M is an R-module, then the quotient group M/N is an R-module where the action on
the cosets is given by r(x +N) = rx +N . With this observation, we have the same isomorphism
theorems as usual.

Theorem 2.4. (1) (The First Isomorphism Theorem.) If ϕ : M → N is an R-module homo-
morphism, then the kernel of ϕ is a submodule of M and M/ kerϕ ∼= ϕ(M).

(2) (The Second Isomorphism Theorem.) Let A,B be submodules of an R-module M . Then,
defining A+B = {a+ b | a ∈ A, b ∈ B}, (A+B)/B ∼= A/(A ∩B).

(3) (The Third Isomorphism Theorem.) Let M be an R-module and A,B be submodules with
A ⊂ B. Then, (M/A)/(B/A) ∼=M/B.

(4) The submodules of M/N are precisely the submodules of M containing N .
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