NOVEMBER 28 NOTES

1. 10.1: Introduction to Modules

Reminder. If G was a group and A was a set, we said that G acted on A if there was a map $G \times A \rightarrow A$ such that $(g, a) \mapsto g \cdot a$ satisfying:
(1) $1 \cdot a=a$ and
(2) $g \cdot(h \cdot a)=(g h) \cdot a$.

If we were to analogously define an action of a ring on a set M, we would want it to be compatible with the ring axioms, i.e.: $r(s m)=(r s) m$ and $(r+s) m=r m+s m$. This leads us to the definition of a module. Note that the symbols $r m+s m$ having meaning requires that there is a binary operation + on the set M (and commutativity of + in R would require this to be commutative as well).
Definition 1.1. Let R be a ring. A left R-module or just an R-module is a set M together with
(1) A binary operation + on M for which M is an abelian group
(2) An action of R on M, denoted by $r m$, satisfying, for all $r, s \in R, m, n \in M$
(a) $(r+s) m=r m+s m$
(b) $(r s) m=r(s m)$
(c) $r(m+n)=r m+r n$
(d) If r has identity, $1 m=m$.

Remark 1.2. If R is a field F, these axioms defining a module are exactly the definition of a vector space V. In other words, vector spaces over F are the same as modules over F.
Definition 1.3. If M is an R-module, an R submodule of M is a subgroup $N \leq M$ that is closed under the action of the ring elements, i.e. $r n \in N$ for all $r \in R, n \in N$.

Using the criteria to be a subgroup, we have the following criteria to determine is N is a submodule:

Proposition 1.4. If R is a ring and M is an R module, a subset N of M is a submodule of M if and only if $N \neq \emptyset$ and $x+r y \in N$ for all $r \in R$ and $x, y \in N$.
Example 1.5. (1) If R is a ring, then R is a R-module where the action is given by multiplication of ring elements.
(2) Let $R^{n}=R \times \cdots \times R$ (n times). This is an R-module where $r\left(a_{1}, \ldots, a_{n}\right):=\left(r a_{1}, \ldots, r a_{n}\right)$. This is called the free module of rank n over R.
(3) If M is an R-module and S is a subring of R (with $1_{S}=1_{R}$), then M is also an S-module. For example, because \mathbb{R} is a \mathbb{R}-module, it is also a \mathbb{Z}-module.

Definition 1.6. If M is an R-module and I is an ideal of R, we say that I annihilates M if $a m=0$ for all $a \in I, m \in M$.
Example 1.7. If M is an R module and I annihilates M, then M is an R / I module by the action $(r+I) m:=r m$.
Example 1.8. Let $R=\mathbb{Z}$ and A be any abelian group (written additively). Then, A is a \mathbb{Z} module with action $n a=a+a+\cdots+a$ (n times) for $n>0$, $n a=0$ if $n=0$, and $n a=-a+\cdots+-a$ if $n<0$. This satisfies the axioms for A to be a \mathbb{Z} module. Note that any module is by definition an abelian group, so we have shown that abelian groups are the same as \mathbb{Z}-modules.

By definition of submodule, we also have that submodules are the same as subgroups of abelian groups.

If there is some integer n such that $n a=0$ for all $a \in A$ (for example, if $n=|A|$), then A is a $\mathbb{Z} / n \mathbb{Z}$ module.

Example 1.9. Suppose F is a field and $R=F[x]$. Let V be a vector space over F and $T: V \rightarrow V$ a linear transformation. We can use T to define an action of R on V so that V is a module over $F[x]$. If $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in F[x]$ and $v \in V$, then we define

$$
p(x) v=\left(a_{n} T^{n}+\cdots+a_{1} T+a_{0}\right) v
$$

where T^{i} means apply the transformation $T i$ times.
By properties of polynomials and linear transformations, this satisfies the axioms for V to be an $F[x]$-module.

Note that this action depends on T; i.e. any choice of T makes V into a $F[x]$-module, but these module structures can be all different!

A special type of R-module is called an R-algebra.
Definition 1.10. Let R be a commutative ring with identity. An R-algebra is a ring A with identity and a ring homomorphism $f: R \rightarrow A$ such that $f\left(1_{R}\right)=1_{A}$ and $f(R)$ is contained in the center of A.

This is a special type of R-module that happens to be a ring; the action is given by $r a:=f(r) a$ (where $f(r) a$ is just the multiplication of $f(r)$ and a in the ring A).

Definition 1.11. If A and B are two R-algebra, an R-algebra homomorphism is a ring homomorphism $\phi: A \rightarrow B$ such that $\phi\left(1_{A}\right)=1_{B}$ and $\phi(r a)=r \phi(a)$ for all $r \in R, a \in A$.

Example 1.12. If R is a commutative ring, let $A=R[x]$. This has a natural homomorphism $f: R \rightarrow A$ given by $f(r)=r$. This also satisfies that $f\left(1_{R}\right)=1_{A}$ and $f(R)$ is contained in the center of A so A is indeed an R-algebra.

2. 10.2: Quotient modules and module homomorphisms

Definition 2.1. Let R be a ring and let M and N be R-modules.
(1) A map $\phi: M \rightarrow N$ is an R-module homomorphism if, for all $x, y \in M$ and $r \in R$:

$$
\begin{gathered}
\phi(x+y)=\phi(x)+\phi(y) \\
\phi(r x)=r \phi(x)
\end{gathered}
$$

(2) A bijective homomorphism of modules is an isomorphism.
(3) If $\phi: M \rightarrow N$ is a homomorphism of modules, then

$$
\begin{gathered}
\operatorname{ker} \phi=\{m \in M \mid \phi(m)=0\} \\
\phi(M)=\operatorname{im} \phi=\{n \in N \mid n=\phi(m) \text { for some } m \in M\}
\end{gathered}
$$

(4) If M and N are R-modules, define $\operatorname{Hom}_{R}(M, N)$ to be the set of all R-module homomorphisms from M to N.
Proposition 2.2. Let M, N, and L be R-modules.
(1) $A \operatorname{map} \phi: M \rightarrow N$ is an R-module homomorphism if and only if, for all $x, y \in M$ and $r \in R$,

$$
\phi(r x+y)=r \phi(x)+\phi(y) .
$$

(2) $\operatorname{Hom}_{R}(M, N)$ is an abelian group, where the group structure is given by $(\phi+\psi)(m)=\phi(m)+\psi(m)$, and if R is commutative, it is an R-module where the action is given by $(r \phi)(m)=r(\phi(m))$.
(3) If $\phi \in \operatorname{Hom}_{R}(L, M)$ and $\psi \in \operatorname{Hom}_{R}(M, N)$, then $\psi \circ \phi \in \operatorname{Hom}_{R}(L, N)$.
(4) If we define multiplication as function composition, then $\operatorname{Hom}_{R}(M, M)$ is a ring with identity. If R is commutative, it is an R-algebra.

Proof. For (1), the forward implication holds by definition. For the converse, if $r=1$, then the equality implies $\phi(x+y)=\phi(x)+\phi(y)$, and if $y=0$, the equality implies that $\phi(r x)=r \phi(x)$, so ϕ is an R-module homomorphism.

For (2), we leave checking that $\operatorname{Hom}_{R}(M, N)$ is an abelian group as an exercise. To show it is an R-module, since we have defined the action, we just need to verify that $r \phi$ as defined is an R-module homomorphism. This holds because:

$$
\begin{aligned}
(r \phi)(a x+y) & =r(\phi(a x+y)) \quad \text { by definition } \\
& =r(a \phi(x)+\phi(y)) \quad \text { because } \phi \text { is a homomorphism } \\
& =r a \phi(x)+r \phi(y) \quad \text { because } N \text { is a module } \\
& =a r \phi(x)+r \phi(y) \quad \text { because } R \text { is commutative } \\
& =a(r \phi)(x)+(r \phi)(y)
\end{aligned}
$$

so this is an R-module homomorphism.
For (3), we need to show that $\psi \circ \phi$ is an R-module homomoprhism. Using (1), this is straightforward from the definition, so we leave this as an exercise.

For (4), one checks that $\operatorname{Hom}_{R}(M, M)$ is a ring with identity equal to the identity function-this is an exercise. To show it is an algebra, let $f: R \rightarrow \operatorname{Hom}_{R}(M, M)$ be the function sending r to the homomorphism that is multiplication by r (which we still denote by r), and define $\phi r:=r \phi$ for all $r \in R$ and $\phi \in \operatorname{Hom}_{R}(M, M)$. This makes $\operatorname{Hom}_{R}(M, M)$ an R-algebra.

Definition 2.3. The endomorphism ring of an R-module is the $\operatorname{ring} \operatorname{End}_{R}(M)=\operatorname{Hom}_{R}(M, M)$. Elements of this ring are called endomorphisms.

Finally, note that modules are abelian groups, so if N is a submodule of M, then N is normal in M. And, if M is an R-module, then the quotient group M / N is an R-module where the action on the cosets is given by $r(x+N)=r x+N$. With this observation, we have the same isomorphism theorems as usual.
Theorem 2.4. (1) (The First Isomorphism Theorem.) If $\phi: M \rightarrow N$ is an R-module homomorphism, then the kernel of ϕ is a submodule of M and $M / \operatorname{ker} \phi \cong \phi(M)$.
(2) (The Second Isomorphism Theorem.) Let A, B be submodules of an R-module M. Then, defining $A+B=\{a+b \mid a \in A, b \in B\},(A+B) / B \cong A /(A \cap B)$.
(3) (The Third Isomorphism Theorem.) Let M be an R-module and A, B be submodules with $A \subset B$. Then, $(M / A) /(B / A) \cong M / B$.
(4) The submodules of M / N are precisely the submodules of M containing N.

