NOVEMBER 28 NOTES

1. 10.1: INTRODUCTION TO MODULES

Reminder. If G was a group and A was a set, we said that G acted on A if there was a map
G x A — A such that (g,a) — ¢ - a satisfying:

(1) 1-a=a and

(2) g-(h-a)=(gh)-a

If we were to analogously define an action of a ring on a set M, we would want it to be compatible

with the ring axioms, i.e.: 7(sm) = (rs)m and (r+s)m = rm+sm. This leads us to the definition of
a module. Note that the symbols rm + sm having meaning requires that there is a binary operation
+ on the set M (and commutativity of 4+ in R would require this to be commutative as well).

Definition 1.1. Let R be a ring. A left R-module or just an R-module is a set M together
with
(1) A binary operation + on M for which M is an abelian group
(2) An action of R on M, denoted by rm, satisfying, for all r,s € R, m,n € M
(a) (r—i—s) =rm+ sm
(b) (rs)m = r(sm)
(c) (m+n) =rm-+rn
(d) If r has identity, 1m = m.

Remark 1.2. If R is a field F', these axioms defining a module are exactly the definition of a vector
space V. In other words, vector spaces over F' are the same as modules over F'.

Definition 1.3. If M is an R-module, an R submodule of M is a subgroup N < M that is closed
under the action of the ring elements, i.e. rn € N for all r € R,n € N.

Using the criteria to be a subgroup, we have the following criteria to determine is NN is a
submodule:

Proposition 1.4. If R is a ring and M is an R module, a subset N of M is a submodule of M if
and only if N # 0 and x +ry € N for allr € R and xz,y € N.

Example 1.5. (1) If R is a ring, then R is a R-module where the action is given by multipli-
cation of ring elements.
(2) Let R = Rx ---x R (n times). This is an R-module where r(ay,...,a,) = (ray,...,ray).
This is called the free module of rank n over R.
(3) If M is an R-module and S is a subring of R (with 1g = 1g), then M is also an S-module.
For example, because R is a R-module, it is also a Z-module.

Definition 1.6. If M is an R-module and [ is an ideal of R, we say that I annihilates M if
am=0forallael,me M.

Example 1.7. If M is an R module and I annihilates M, then M is an R/I module by the action
(r+I)m:=rm.

Example 1.8. Let R = Z and A be any abelian group (written additively). Then, A is a Z module
with action na =a+a+---+ a (n times) for n >0, na=0ifn =0, and na=—-a+---+ —a if
n < 0. This satisfies the axioms for A to be a Z module. Note that any module is by definition an
abelian group, so we have shown that abelian groups are the same as Z-modules.
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By definition of submodule, we also have that submodules are the same as subgroups of abelian
groups.

If there is some integer n such that na = 0 for all a € A (for example, if n = |A]), then A is a
Z/nZ module.

Example 1.9. Suppose F' is a field and R = F[z]. Let V be a vector space over Frand T : V — V
a linear transformation. We can use T to define an action of R on V so that V is a module over
Flz]. If p(z) = apa™ + -+ -+ a1z + ag € Fz] and v € V, then we define

p(x)v = (a,T" + -+ a1T + ag)v

where T means apply the transformation 7" i times.

By properties of polynomials and linear transformations, this satisfies the axioms for V' to be an
F[z]-module.

Note that this action depends on T’ i.e. any choice of T' makes V into a F[z]-module, but these
module structures can be all different!

A special type of R-module is called an R-algebra.

Definition 1.10. Let R be a commutative ring with identity. An R-algebra is a ring A with
identity and a ring homomorphism f : R — A such that f(1g) = 14 and f(R) is contained in the
center of A.

This is a special type of R-module that happens to be a ring; the action is given by ra := f(r)a
(where f(r)a is just the multiplication of f(r)and a in the ring A).

Definition 1.11. If A and B are two R-algebra, an R-algebra homomorphism is a ring
homomorphism ¢ : A — B such that ¢(14) = 1p and ¢(ra) = r¢(a) for all r € R,a € A.

Example 1.12. If R is a commutative ring, let A = R[z]. This has a natural homomorphism
f: R — A given by f(r) = r. This also satisfies that f(1g) = 14 and f(R) is contained in the
center of A so A is indeed an R-algebra.

2. 10.2: QUOTIENT MODULES AND MODULE HOMOMORPHISMS

Definition 2.1. Let R be a ring and let M and N be R-modules.
(1) Amap ¢: M — N is an R-module homomorphism if, for all z,y € M and r € R:

d(z +y) = o) + ¢(y)
¢(rz) = ro(x)
(2) A bijective homomorphism of modules is an isomorphism.
(3) If ¢ : M — N is a homomorphism of modules, then
ker¢p = {m € M | ¢(m) =0}
d(M) =im¢p = {n € N | n = ¢(m) for some m € M}
(4) If M and N are R-modules, define Homp (M, N) to be the set of all R-module homomor-
phisms from M to N.
Proposition 2.2. Let M, N, and L be R-modules.

(1) A map ¢ : M — N is an R-module homomorphism if and only if, for all z,y € M and
r € R,
o(rz +y) = ré(z) + o(y).
(2) Homp(M, N) is an abelian group, where the group structure is given by (¢+)(m) = ¢(m)+(m),
and if R is commutative, it is an R-module where the action is given by (r¢)(m) = r(¢p(m)).
(8) If ¢ € Homp(L, M) and ¢ € Homgr(M, N), then ¢ o ¢ € Hompg(L, N).
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(4) If we define multiplication as function composition, then Homp(M,M) is a ring with
identity. If R is commutative, it is an R-algebra.

Proof. For (1), the forward implication holds by definition. For the converse, if » = 1, then the
equality implies ¢(x + y) = ¢(z) + ¢(y), and if y = 0, the equality implies that ¢(rz) = r¢(x), so
¢ is an R-module homomorphism.

For (2), we leave checking that Hompg(M, N) is an abelian group as an exercise. To show it
is an R-module, since we have defined the action, we just need to verify that r¢ as defined is an
R-module homomorphism. This holds because:

(r¢)(ax +vy) =r(¢(ax +y)) by definition
=r(ad(z) + #(y)) because ¢ is a homomorphism
=ra¢(r) +rd(y) because N is a module

=ar¢(r) +ré(y) because R is commutative

= a(r¢)(z) + (r)(y)
so this is an R-module homomorphism.
For (3), we need to show that v o ¢ is an R-module homomoprhism. Using (1), this is straight-
forward from the definition, so we leave this as an exercise.
For (4), one checks that Hompg(M, M) is a ring with identity equal to the identity function—this
is an exercise. To show it is an algebra, let f : R — Hompg (M, M) be the function sending r to the

homomorphism that is multiplication by r (which we still denote by ), and define ¢r := r¢ for all
r € R and ¢ € Homp(M, M). This makes Hompg(M, M) an R-algebra. O

Definition 2.3. The endomorphism ring of an R-module is the ring Endg(M) = Hompg (M, M).
Elements of this ring are called endomorphisms.

Finally, note that modules are abelian groups, so if N is a submodule of M, then N is normal in
M. And, if M is an R-module, then the quotient group M /N is an R-module where the action on
the cosets is given by r(x + N) = rz + N. With this observation, we have the same isomorphism
theorems as usual.

Theorem 2.4. (1) (The First Isomorphism Theorem.) If ¢ : M — N is an R-module homo-
morphism, then the kernel of ¢ is a submodule of M and M/ker ¢ = ¢(M).
(2) (The Second Isomorphism Theorem.) Let A, B be submodules of an R-module M. Then,
defining A+ B={a+blac Abe B}, (A+B)/B=A/(ANB).
(3) (The Third Isomorphism Theorem.) Let M be an R-module and A, B be submodules with
A C B. Then, (M/A)/(B/A) = M/B.
(4) The submodules of M/N are precisely the submodules of M containing N.



	1. 10.1: Introduction to Modules
	2. 10.2: Quotient modules and module homomorphisms

