NOVEMBER 16 NOTES

We discuss Chapter 8 of the textbook (all at once, instead of in individual sections).

1. Euclidean Domains, Principal Ideal Domains, and Unique Factorization Domains

Let R be an integral domain. Today, we will define three different types of domain and see how they are related.
Definition 1.1. A function $N: R \rightarrow \mathbb{Z}^{\geq 0}$ such that $N(0)=0$ is called a norm on R. If $N(a)>0$ for all $a \neq 0$, then N is a positive norm.

Definition 1.2. An integral domain R is a Euclidean Domain if there exists a norm on R such that R has a division algorithm: for any $a, b \in R$, there exists $q, r \in R$ such that $a=q b+r$ with $r=0$ or $N(r)<N(b)$.
Example 1.3. (1) Fields are Euclidean domains with any norm, because for any $a, b \in F$, $a=q b+0$ where $q=a b^{-1}$.
(2) \mathbb{Z} is a Euclidean domain with norm $N(a)=|a|$.
(3) If F is a field, $F[x]$ is a Euclidean domain with norm $N(p(x))=\operatorname{deg} p(x)$. (We can do long division of polynomials.)
(4) The quadratic integer rings \mathcal{O} are typically not Euclidean domains, but $\mathbb{Z}[i]$ is. Let $N(a+b i)=a^{2}+b^{2}$. Let $\alpha=a+b i$ and $\beta=c+d i$ be elements of $\mathbb{Z}[i]$. In $\mathbb{Q}(i)$, we can write $\alpha / \beta=r+s i$ for rational numbers r, s. Let p be the integer closest to r and q the integer closest to s (note that this implies that $|r-p| \leq 1 / 2$ and $|s-q| \leq 1 / 2$).

Then, in $\mathbb{Z}[i]$, we can write $\alpha=(p+q i) \beta+(\alpha-(p+q i) \beta)$. Because

$$
\alpha-(p+q i) \beta=\beta(\alpha / \beta-(p+q i))=\beta((r-p)+(s-q) i),
$$

we have
$N(\alpha-(p+q i) \beta)=N(\beta((r-p)+(s-q) i))=N(\beta) N((r-p)+(s-q) i)=N(\beta)\left((r-p)^{2}+(s-q)^{2}\right) \leq \frac{1}{2} N(\beta)$ so $N(\alpha-(p+q i) \beta)<N(\beta)$, and hence $\mathbb{Z}[i]$ is a Euclidean domain.

Definition 1.4. An integral domain in which every ideal is principal is called a principal ideal domain (PID).

Example 1.5. Fields are PIDs because the only ideals are (0) and (1). The integers \mathbb{Z} are a PID because the only ideals are (n) for some $n \in \mathbb{Z}$.

Example 1.6. $\mathbb{Z}[x]$ is not a principal ideal domain. The ideal $(2, x)=\{2 p(x)+x q(x) \mid p, q \in \mathbb{Z}[x]\}$ is not principal. If it were, then $(2, x)=(a(x))$ for $a(x) \in \mathbb{Z}[x]$. Then, $2 \in(a(x))$ so $2=p(x) a(x)$ for some $p(x) \in \mathbb{Z}[x]$. Since degree is additive, this implies that $\operatorname{deg} p(x)=\operatorname{deg} a(x)=0$, so $p(x)$ and $a(x)$ are integers. But, the only factors of 2 are $\pm 1, \pm 2$, so either $a(x)= \pm 1$ or $a(x)= \pm 2$. If $a(x)= \pm 1$, it is a unit, so $(a(x))=\mathbb{Z}[x]$, which is a contradiction because $1 \notin(2, x)$. If $a(x)= \pm 2$, then $x \in(a(x))$ implies that $x=2 q(x)$ for some $q \in \mathbb{Z}[x]$, which is impossible. Therefore, $(2, x)$ is not principal.
Proposition 1.7. If R is a Euclidean domain, then R is a principal ideal domain.
Proof. Suppose $I \subset R$ is an ideal. If $I=(0)$, then I is principal. Suppose $I \neq(0)$ and let $d \in I$ be any element with minimum norm. Then, $d \in I$ implies $(d) \subset I$, and if $a \in I$ is any element, then because R is a Euclidean domain, $a=q d+r$ where either $r=0$ or $N(r)<N(d)$. However,
$r=a-q d \in I$, so we cannot have $N(r)<N(d)$, so we must have $r=0$ and $a=q d$ so $a \in(d)$. Therefore, $I=(d)$.
Example 1.8. If $R=\mathbb{Z}[\sqrt{-5}]$, then R is not a PID so not a Euclidean domain. In particular, not all quadratic integer rings are Euclidean domains.

Let $I=(3,2+\sqrt{-5})$. We will show that I is not principal. Let N be $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$. If $I=(a+b \sqrt{-5})$ were principal, then $3=\alpha(a+b \sqrt{-5})$ and $2+\sqrt{-5}=\beta(a+b \sqrt{-5})$ for some $\alpha, \beta \in R$. Taking norm of the first equation, we get $9=N(\alpha)\left(a^{2}+5 b^{2}\right)$, but norms are integers, so this implies $a^{2}+5 b^{2}=1,3,9$. It cannot be 3 (there are just no solutions to this equation) and it cannot be 1 because this implies that $a^{2}=1$ and $b=0$, so $I=(\pm 1)$ so $I=R$, which is a contradiction (exercise: show this!). Finally, it cannot be 9 because that implies that $N(\alpha)=1$, so we must have $\alpha= \pm 1$, but then $a+b \sqrt{-5}= \pm 3$, so $2+\sqrt{-5}= \pm 3 \beta$, a contradiction. Therefore, this is not principal.
Proposition 1.9. Suppose R is a PID. Then, every nonzero prime ideal in R is maximal.
Proof. Let (p) be a nonzero prime ideal and let $I=(m)$ be an ideal containing (p). Then, $p \in(m)$, so $p=r m$ for some $r \in R$, but (p) is prime, so this means $r \in(p)$ or $m \in(p)$. If $m \in(p)$, then $(m) \subset(p)$ so $(m)=(p)$. If $r \in(p)$, then $r=p s$ for some $s \in R$ so $p=r m=p s m$ so $s m=1$ and hence m is a unit and $(m)=R$. Therefore, the only ideals that contain (p) are (p) and R, so (p) is maximal.

Corollary 1.10. If R is commutative such that $R[x]$ is a PID, then R is a field.
Proof. Because $R \subset R[x]$ which is an integral domain, R is an integral domain. Note that (x) is a nonzero prime ideal because $R[x] /(x) \cong R$ is an integral domain, but the previous proposition implies that (x) is maximal, so in fact $R[x] /(x) \cong R$ is a field.

Euclidean domains and PIDs enjoy many of the same properties as the integers. We won't prove all of these because their proofs are the same as the proofs when $R=\mathbb{Z}$.

Suppose R is an integral domain.
Definition 1.11. If $a, b \in R, b \neq 0$, then we say b divides a if $a=b x$ for some $x \in R$. The greatest common divisor of a and b is $d=\operatorname{gcd}(a, b)$ such that $d|a, d| b$, and for any d^{\prime} such that $d^{\prime} \mid a$ and $d^{\prime} \mid b$, then $d^{\prime} \mid d$.

Proposition 1.12. If the ideal $(a, b)=(d)$, then d is the greatest common divisor of a and b.
Proposition 1.13. If R is a PID and $a, b \in R$ are nonzero elements, then $(a, b)=(d)$ where $d=\operatorname{gcd}(a, b)$.

Remark 1.14. Not every PID is a Euclidean domain. See the book for the proof that certain quadratic integer rings are PIDs but not Euclidean domains.

Finally, we define UFDs.
Definition 1.15. Let R be an integral domain.
(1) A nonzero, nonunit element $r \in R$ is irreducible if whenever $r=a b$ for $a, b \in R$, either a or b is a unit. If r is not irreducible, it is reducible.
(2) If $p \in R$ is a nonzero, nonunit, it is prime if (p) is a prime ideal. (Equivalently, if $p \mid a b$, then $p \mid a$ or $p \mid b$.)
(3) If $a=u b$ for a unit $u \in R$, then a and b are associate.

Proposition 1.16. If R is an integral domain, a prime element is irreducible.
Proof. Suppose p is prime and $p=a b$. Because p is prime, $a=p r$ or $b=p r$ for some $r \in R$. Without loss of generality, suppose $a=p r$. Then, $p=a b=p r b$ so $r b=1$ so b is a unit, so p is irreducible.

So, prime always implies irreducible. The converse holds in PIDs.
Proposition 1.17. If R is a PID, an element is prime if and only if it is irreducible.
Proof. We must show an irreducible element is prime. Suppose p is irreducible and let $M=(m)$ be any ideal containing (p) (which is principal by assumption). Then, $p \in(m)$, so $p=r m$, but p is irreducible, so either r or m is a unit. If r is a unit, then $(p)=(m)$, and if m is a unit, then (m) $=R$, so the only ideals containing (p) are itself or R, so (p) is maximal and hence prime.
Definition 1.18. A unique factorization domain (UFD) is an integral domain R in which every nonzero nonunit element $r \in R$ satisfies:
(1) $r=p_{1} \ldots p_{n}$ for irreducible elements $p_{i} \in R$, and
(2) this decomposition is unique up to associates (if $r=q_{1} \ldots q_{m}$, then $n=m$ and up to rearranging, $p_{i}=u_{i} q_{i}$ for some unit u_{i}).

Example 1.19. \mathbb{Z} is a UFD because every element has a prime factorization.
Example 1.20. $\mathbb{Z}[\sqrt{-5}]$ is not a UFD: we can write $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$. Exercise: these are two non-associate factorizations into irreducible elements.
Proposition 1.21. If R is a UFD, an element is prime if and only if it is irreducible.
Proof. We must show an irreducible element is prime. Suppose p is irreducible and assume $p \mid a b$, so $p c=a b$ for some $c \in R$. Writing a, b, c as products of irreducible elements and using associateness of the factorization, because p is irreducible, it must be associate to one of the elements in the factorization of a or b (without loss of generality, assume a). Then, $a=(u p) p_{2} \ldots p_{n}$, so $p \mid a$ and hence p is prime.
Theorem 1.22. Every PID is a UFD.
Proof. Let R be a PID and $r \in R$ is a nonzero element. We must show that R has a unique factorization into irreducible elements. This proof follows the same structure as the proof that we can factor integers!

If r is irreducible, then we are done. If r is not irreducible, then $r=r_{1} r_{2}$ where neither r_{1}, r_{2} is a unit. If these are irreducible, we are not. If not, write $r_{1}=r_{11} r_{12}$ and $r_{2}=r_{21} r_{22}$. We will just repeat this process until we obtain the factorization of r, so it just suffices to show that this terminates.

Suppose that this never ended. Then, $(r) \subset\left(r_{1}\right) \subset\left(r_{11}\right) \subset\left(r_{111}\right) \subset \cdots \subset R$. Because these elements do not differ by a unit, all of these containments are proper, so we have an infinite ascending chain of ideals. However, this is a contradiction: let $I_{0}=(r), I_{1}=\left(r_{1}\right)$, etc, and let $I=\cup_{k \geq 0} I_{k}$. Because I is an ideal and R is a PID, I is principal, so $I=(a)$ for some $a \in R$, but by definition of union, we must have $a \in I_{k}$ for some k so $I \subset I_{k}$ and hence $I_{n}=I_{k}$ for all $n \geq k$. Therefore, this chain of ideals must terminate, so we have a contradiction.

One can show uniqueness by induction, which we leave to the reader.
So, we have shown:
Fields \subset Euclidean domains \subset PIDs \subset UFDs \subset integral domains.

