
NOVEMBER 16 NOTES

We discuss Chapter 8 of the textbook (all at once, instead of in individual sections).

1. Euclidean Domains, Principal Ideal Domains, and Unique Factorization Domains

Let R be an integral domain. Today, we will define three different types of domain and see how
they are related.

Definition 1.1. A function N : R → Z≥0 such that N(0) = 0 is called a norm on R. If N(a) > 0
for all a ̸= 0, then N is a positive norm.

Definition 1.2. An integral domain R is a Euclidean Domain if there exists a norm on R such
that R has a division algorithm: for any a, b ∈ R, there exists q, r ∈ R such that a = qb + r with
r = 0 or N(r) < N(b).

Example 1.3. (1) Fields are Euclidean domains with any norm, because for any a, b ∈ F ,
a = qb+ 0 where q = ab−1.

(2) Z is a Euclidean domain with norm N(a) = |a|.
(3) If F is a field, F [x] is a Euclidean domain with norm N(p(x)) = deg p(x). (We can do long

division of polynomials.)
(4) The quadratic integer rings O are typically not Euclidean domains, but Z[i] is. Let

N(a + bi) = a2 + b2. Let α = a + bi and β = c + di be elements of Z[i]. In Q(i), we
can write α/β = r+ si for rational numbers r, s. Let p be the integer closest to r and q the
integer closest to s (note that this implies that |r − p| ≤ 1/2 and |s− q| ≤ 1/2).

Then, in Z[i], we can write α = (p+ qi)β + (α− (p+ qi)β). Because

α− (p+ qi)β = β(α/β − (p+ qi)) = β((r − p) + (s− q)i),

we have

N(α−(p+qi)β) = N(β((r−p)+(s−q)i)) = N(β)N((r−p)+(s−q)i) = N(β)((r−p)2+(s−q)2) ≤ 1

2
N(β)

so N(α− (p+ qi)β) < N(β), and hence Z[i] is a Euclidean domain.

Definition 1.4. An integral domain in which every ideal is principal is called a principal ideal
domain (PID).

Example 1.5. Fields are PIDs because the only ideals are (0) and (1). The integers Z are a PID
because the only ideals are (n) for some n ∈ Z.

Example 1.6. Z[x] is not a principal ideal domain. The ideal (2, x) = {2p(x)+xq(x) | p, q ∈ Z[x]}
is not principal. If it were, then (2, x) = (a(x)) for a(x) ∈ Z[x]. Then, 2 ∈ (a(x)) so 2 = p(x)a(x)
for some p(x) ∈ Z[x]. Since degree is additive, this implies that deg p(x) = deg a(x) = 0, so p(x)
and a(x) are integers. But, the only factors of 2 are ±1,±2, so either a(x) = ±1 or a(x) = ±2. If
a(x) = ±1, it is a unit, so (a(x)) = Z[x], which is a contradiction because 1 /∈ (2, x). If a(x) = ±2,
then x ∈ (a(x)) implies that x = 2q(x) for some q ∈ Z[x], which is impossible. Therefore, (2, x) is
not principal.

Proposition 1.7. If R is a Euclidean domain, then R is a principal ideal domain.

Proof. Suppose I ⊂ R is an ideal. If I = (0), then I is principal. Suppose I ̸= (0) and let d ∈ I
be any element with minimum norm. Then, d ∈ I implies (d) ⊂ I, and if a ∈ I is any element,
then because R is a Euclidean domain, a = qd + r where either r = 0 or N(r) < N(d). However,
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r = a − qd ∈ I, so we cannot have N(r) < N(d), so we must have r = 0 and a = qd so a ∈ (d).
Therefore, I = (d). □

Example 1.8. If R = Z[
√
−5], then R is not a PID so not a Euclidean domain. In particular, not

all quadratic integer rings are Euclidean domains.
Let I = (3, 2 +

√
−5). We will show that I is not principal. Let N be N(a+ b

√
−5) = a2 + 5b2.

If I = (a + b
√
−5) were principal, then 3 = α(a + b

√
−5) and 2 +

√
−5 = β(a + b

√
−5) for some

α, β ∈ R. Taking norm of the first equation, we get 9 = N(α)(a2 + 5b2), but norms are integers,
so this implies a2 + 5b2 = 1, 3, 9. It cannot be 3 (there are just no solutions to this equation) and
it cannot be 1 because this implies that a2 = 1 and b = 0, so I = (±1) so I = R, which is a
contradiction (exercise: show this!). Finally, it cannot be 9 because that implies that N(α) = 1, so
we must have α = ±1, but then a + b

√
−5 = ±3, so 2 +

√
−5 = ±3β, a contradiction. Therefore,

this is not principal.

Proposition 1.9. Suppose R is a PID. Then, every nonzero prime ideal in R is maximal.

Proof. Let (p) be a nonzero prime ideal and let I = (m) be an ideal containing (p). Then, p ∈ (m),
so p = rm for some r ∈ R, but (p) is prime, so this means r ∈ (p) or m ∈ (p). If m ∈ (p), then
(m) ⊂ (p) so (m) = (p). If r ∈ (p), then r = ps for some s ∈ R so p = rm = psm so sm = 1 and
hence m is a unit and (m) = R. Therefore, the only ideals that contain (p) are (p) and R, so (p)
is maximal. □

Corollary 1.10. If R is commutative such that R[x] is a PID, then R is a field.

Proof. Because R ⊂ R[x] which is an integral domain, R is an integral domain. Note that (x) is
a nonzero prime ideal because R[x]/(x) ∼= R is an integral domain, but the previous proposition
implies that (x) is maximal, so in fact R[x]/(x) ∼= R is a field. □

Euclidean domains and PIDs enjoy many of the same properties as the integers. We won’t prove
all of these because their proofs are the same as the proofs when R = Z.

Suppose R is an integral domain.

Definition 1.11. If a, b ∈ R, b ̸= 0, then we say b divides a if a = bx for some x ∈ R. The greatest
common divisor of a and b is d = gcd(a, b) such that d | a, d | b, and for any d′ such that d′ | a and
d′ | b, then d′ | d.
Proposition 1.12. If the ideal (a, b) = (d), then d is the greatest common divisor of a and b.

Proposition 1.13. If R is a PID and a, b ∈ R are nonzero elements, then (a, b) = (d) where
d = gcd(a, b).

Remark 1.14. Not every PID is a Euclidean domain. See the book for the proof that certain
quadratic integer rings are PIDs but not Euclidean domains.

Finally, we define UFDs.

Definition 1.15. Let R be an integral domain.

(1) A nonzero, nonunit element r ∈ R is irreducible if whenever r = ab for a, b ∈ R, either a
or b is a unit. If r is not irreducible, it is reducible.

(2) If p ∈ R is a nonzero, nonunit, it is prime if (p) is a prime ideal. (Equivalently, if p | ab,
then p | a or p | b.)

(3) If a = ub for a unit u ∈ R, then a and b are associate.

Proposition 1.16. If R is an integral domain, a prime element is irreducible.

Proof. Suppose p is prime and p = ab. Because p is prime, a = pr or b = pr for some r ∈ R.
Without loss of generality, suppose a = pr. Then, p = ab = prb so rb = 1 so b is a unit, so p is
irreducible. □



NOVEMBER 16 NOTES 3

So, prime always implies irreducible. The converse holds in PIDs.

Proposition 1.17. If R is a PID, an element is prime if and only if it is irreducible.

Proof. We must show an irreducible element is prime. Suppose p is irreducible and let M = (m)
be any ideal containing (p) (which is principal by assumption). Then, p ∈ (m), so p = rm, but p
is irreducible, so either r or m is a unit. If r is a unit, then (p) = (m), and if m is a unit, then
(m) = R, so the only ideals containing (p) are itself or R, so (p) is maximal and hence prime. □

Definition 1.18. A unique factorization domain (UFD) is an integral domain R in which
every nonzero nonunit element r ∈ R satisfies:

(1) r = p1 . . . pn for irreducible elements pi ∈ R, and
(2) this decomposition is unique up to associates (if r = q1 . . . qm, then n = m and up to

rearranging, pi = uiqi for some unit ui).

Example 1.19. Z is a UFD because every element has a prime factorization.

Example 1.20. Z[
√
−5] is not a UFD: we can write 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5). Exercise:

these are two non-associate factorizations into irreducible elements.

Proposition 1.21. If R is a UFD, an element is prime if and only if it is irreducible.

Proof. We must show an irreducible element is prime. Suppose p is irreducible and assume p | ab, so
pc = ab for some c ∈ R. Writing a, b, c as products of irreducible elements and using associateness
of the factorization, because p is irreducible, it must be associate to one of the elements in the
factorization of a or b (without loss of generality, assume a). Then, a = (up)p2 . . . pn, so p | a and
hence p is prime. □

Theorem 1.22. Every PID is a UFD.

Proof. Let R be a PID and r ∈ R is a nonzero element. We must show that R has a unique
factorization into irreducible elements. This proof follows the same structure as the proof that we
can factor integers!

If r is irreducible, then we are done. If r is not irreducible, then r = r1r2 where neither r1, r2
is a unit. If these are irreducible, we are not. If not, write r1 = r11r12 and r2 = r21r22. We will
just repeat this process until we obtain the factorization of r, so it just suffices to show that this
terminates.

Suppose that this never ended. Then, (r) ⊂ (r1) ⊂ (r11) ⊂ (r111) ⊂ · · · ⊂ R. Because these
elements do not differ by a unit, all of these containments are proper, so we have an infinite
ascending chain of ideals. However, this is a contradiction: let I0 = (r), I1 = (r1), etc, and let
I = ∪k≥0Ik. Because I is an ideal and R is a PID, I is principal, so I = (a) for some a ∈ R, but
by definition of union, we must have a ∈ Ik for some k so I ⊂ Ik and hence In = Ik for all n ≥ k.
Therefore, this chain of ideals must terminate, so we have a contradiction.

One can show uniqueness by induction, which we leave to the reader. □

So, we have shown:
Fields ⊂ Euclidean domains ⊂ PIDs ⊂ UFDs ⊂ integral domains.
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