NOVEMBER 7 NOTES

1. 7.1: INTRODUCTION TO RINGS: BASIC DEFINITIONS AND EXAMPLES
Some reminders from last week:

Definition 1.1. A ring R is a set with two binary operations, + and x (called addition and
multiplication) such that:

(1) (R,+) is an abelian group, where we denote the identity element by 0 and the inverse of
some a € R by —a,

(2) x is an associative binary operation, and

(3) the distributive laws hold: for all a,b,c € R,

(a+b) xec=(axc)+ (bxc)

and
ax(b+c)=(axb)+ (axc).

Definition 1.2. Let R be a ring. R is commutative if x is commutative. R is said to have an
identity if there exists an element 1 € R such that 1 xa =a x 1 =ua for all a € R.

Definition 1.3. Let R be a ring with identity 1 where 1 # 0. If every nonzero element a € R has
a multiplicative inverse, i.e. for all a € R there exists a~! € R such that aa™! = a " 'a =1, then R
is called a division ring. If R is a commutative division ring, then R is called a field.

Definition 1.4. Let R be a ring.

(1) A nonzero element a € R is called a zero divisor if there exists some b € R, b # 0, such
that ab = 0 or ba = 0. A commutative ring with identity 1 # 0 is called an integral
domain if it has no zero divisors.

(2) If R has an identity 1 # 0, an element u € R is called a unit if u has a multiplicative inverse
u~! € R. The set of all units in a ring R are by definition a group under multiplication, so
is called the group of units of R and denoted by R*.

Definition 1.5. Let R be a ring. A subring of R is a subgroup of R that is closed under
multiplication (i.e. a subset of R that is also a ring).

Here is an example that we started last time:

Example 1.6. Let D € Q be a rational number that is not a perfect square in Q (not the square
of any rational number).

Let Q(v/D) = {a+bV/D | a,b € Q} C C}. This is called a quadratic field. It is a subring of
C because it is a subgroup of C and (a + bv/D)(c + dv/D) = (ac + bdD) + (ad + bc)v/D), so it is
closed under multiplication. (In fact, if VD € R, it is a subring of R.) It is also commutative and
has identity 1 = 1 + 0v/D).

It turns out that Q(\/ﬁ) is also a field. If a + bv/D is a nonzero element, then a? — b2D #0
(this would imply that D = a?/b? so is a perfect square) which them implies it has a multiplicative

inverse given by Z{_bgég, which can be written as ¢ + dv/D for ¢,d € Q.

One comment: we will often assume that D is actually a square-free integer, meaning it is not

divisible by the square of any prime number. Indeed, if D = ¢ € Q, then D = z—;D’ where D' = &b

where s2 is the largest perfect square that divides a. If D is not a square and written in lowest
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form (so (a,b) = 1), then D’ is an integer that is square-free. Furthermore, Q(vD) = Q(v'D’)
because VD = %\/ﬁ ,s0 c+dvVD = c+ %\/ D'. Therefore, in any example of quadratic field, we
can assume without any loss of generality that D is a square-free integer.

From this example, we have several interesting subrings. The following example defines several
of them:

Example 1.7. If D is a square-free integer, then Z[v/D] = {a + bv/D | a,b € Z} is a subring of
Q(VD).

If D = —1, then we have the ring Z[i] = {a + bi | a,b € Z} which is called the Gaussian
integers.

If D=1 (mod 4), we actually have a slightly larger interesting subring:

1+vD
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(check that this is a subring!). These are interesting for several reasons and have names.
Let O = Z[w] € Q(v/D) be the subring given by:

A

w=VDif D=2,3 (mod 4) w:1+2\/ﬁifD:1 (mod 4).

This ring O is called the ring of integers in Q(v/D).
On the quadratic field, we have a function called a norm:

N:QWD)—=Q
N(a+bVD) = (a+bVD)(a —bVD) = a® — b’ D.
You can check the following facts about the norm:

(1) For any o, 8 € Q(v/'D), N(a)N(B) = N(af), and
(2) For a +bw € O = Z]w],

2 _ 12 —
N(a+bw)_{ @ b2D 2 D =23 (mod 4)
a*+ab+(1—-D)*/4 D=1 (mod4)
so for any e € O, N(a) € Z.

This actually allows us to compute the units in many rings O! We can do this in both cases, but
for now we just write the case that D = 2,3 (mod 4). If a + bw € O has N(a + bw) = +1, then
(a+ bw)~! = £(a — bw), which is still an element of O, so is a unit. If @ € O is a unit, then for
some S € O, af =1s0o N(a)N(8) = N(af) = N(1) =1, but N(a) and N(3) are integers, so this
is possible only if N(«) = £1. Therefore, @ € O is a unit if and only if N(«) = £1. (This is also
true in the case D =1 (mod 4).)

Let’s apply this: find the group of units in Z[i]. The previous computation says a + bi is a unit

if and only if N(a + bi) = a® + b> = 1. Because a and b are integers, this is possible if and only if
(a,b) € {(1,0),(-1,0),(0,1),(0,—1)}. So, Z[i]* = {1,—1,14,—i}.

2. 7.3: RING HOMOMORPHISMS AND QUOTIENT RINGS
A few more definitions.

Definition 2.1. Let R and S be rings.

(1) Aring homomorphismisamap ¢ : R — Ssuch that, foralla,b € R, ¢(a+b) = ¢(a)+¢(b)
and ¢(ab) = ¢(a)p(b).
(2) The kernel of ¢ is
ker¢p = {r € R | ¢(r) = 0}.
(3) An isomorphism is a bijective homomorphism.
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Example 2.2. The function ¢ : Z — Zg given by ¢(n) = n (mod 2) (equivalently, ¢(n) = 0 if n is
even and ¢(n) =1 if n is odd) is a homomorphism. The kernel is the set of even integers.

Example 2.3. Fix r € R, where R is a ring. Let ev, : R[x] — R be the function ev,(p(x)) = p(r)
(called ‘evaluation’ of p at r). This is a ring homomorphism:

evr(p(z) + q(x)) = p(r) + q(r) = ev.(p(x)) + ev,(q(x))
and
evr(p(z)q(x)) = p(r)q(r) = ev,(p(x))evr(q(z))-
The kernel is precisely the set of polynomials such that p(r) = 0, i.e. the polynomials for which
r is a root.

A short proposition, whose proof we leave as an exercise:

Proposition 2.4. Let R and S be rings and ¢ : R — S a homomorphism. Then,
(1) The image of ¢ is a subring of R, and
(2) The kernel of ¢ is a subring of R. Furthermore, if a € ker ¢ and r € R is any element, then
ar € ker ¢.

This last comment on the kernel is an example of something called an ideal, which we will define
next time.
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