
NOVEMBER 7 NOTES

1. 7.1: Introduction to rings: basic definitions and examples

Some reminders from last week:

Definition 1.1. A ring R is a set with two binary operations, + and × (called addition and
multiplication) such that:

(1) (R,+) is an abelian group, where we denote the identity element by 0 and the inverse of
some a ∈ R by −a,

(2) × is an associative binary operation, and
(3) the distributive laws hold: for all a, b, c ∈ R,

(a+ b)× c = (a× c) + (b× c)

and
a× (b+ c) = (a× b) + (a× c).

Definition 1.2. Let R be a ring. R is commutative if × is commutative. R is said to have an
identity if there exists an element 1 ∈ R such that 1× a = a× 1 = a for all a ∈ R.

Definition 1.3. Let R be a ring with identity 1 where 1 ̸= 0. If every nonzero element a ∈ R has
a multiplicative inverse, i.e. for all a ∈ R there exists a−1 ∈ R such that aa−1 = a−1a = 1, then R
is called a division ring. If R is a commutative division ring, then R is called a field.

Definition 1.4. Let R be a ring.

(1) A nonzero element a ∈ R is called a zero divisor if there exists some b ∈ R, b ̸= 0, such
that ab = 0 or ba = 0. A commutative ring with identity 1 ̸= 0 is called an integral
domain if it has no zero divisors.

(2) If R has an identity 1 ̸= 0, an element u ∈ R is called a unit if u has a multiplicative inverse
u−1 ∈ R. The set of all units in a ring R are by definition a group under multiplication, so
is called the group of units of R and denoted by R×.

Definition 1.5. Let R be a ring. A subring of R is a subgroup of R that is closed under
multiplication (i.e. a subset of R that is also a ring).

Here is an example that we started last time:

Example 1.6. Let D ∈ Q be a rational number that is not a perfect square in Q (not the square
of any rational number).

Let Q(
√
D) = {a + b

√
D | a, b ∈ Q} ⊂ C}. This is called a quadratic field. It is a subring of

C because it is a subgroup of C and (a + b
√
D)(c + d

√
D) = (ac + bdD) + (ad + bc)

√
D), so it is

closed under multiplication. (In fact, if
√
D ∈ R, it is a subring of R.) It is also commutative and

has identity 1 = 1 + 0
√
D).

It turns out that Q(
√
D) is also a field. If a + b

√
D is a nonzero element, then a2 − b2D ̸= 0

(this would imply that D = a2/b2 so is a perfect square) which them implies it has a multiplicative

inverse given by a−b
√
D

a2−b2D
, which can be written as c+ d

√
D for c, d ∈ Q.

One comment: we will often assume that D is actually a square-free integer, meaning it is not

divisible by the square of any prime number. Indeed, if D = a
b ∈ Q, then D = s2

b2
D′ where D′ = a

s2
b

where s2 is the largest perfect square that divides a. If D is not a square and written in lowest
1



2 NOVEMBER 7 NOTES

form (so (a, b) = 1), then D′ is an integer that is square-free. Furthermore, Q(
√
D) = Q(

√
D′)

because
√
D = 1

b

√
D′, so c + d

√
D = c + d

b

√
D′. Therefore, in any example of quadratic field, we

can assume without any loss of generality that D is a square-free integer.

From this example, we have several interesting subrings. The following example defines several
of them:

Example 1.7. If D is a square-free integer, then Z[
√
D] = {a + b

√
D | a, b ∈ Z} is a subring of

Q(
√
D).

If D = −1, then we have the ring Z[i] = {a + bi | a, b ∈ Z} which is called the Gaussian
integers.

If D = 1 (mod 4), we actually have a slightly larger interesting subring:

Z[
1 +

√
D

2
]

(check that this is a subring!). These are interesting for several reasons and have names.

Let O = Z[ω] ⊂ Q(
√
D) be the subring given by:

ω =
√
D if D = 2, 3 (mod 4) ω =

1 +
√
D

2
if D = 1 (mod 4).

This ring O is called the ring of integers in Q(
√
D).

On the quadratic field, we have a function called a norm:

N : Q(
√
D) → Q

N(a+ b
√
D) = (a+ b

√
D)(a− b

√
D) = a2 − b2D.

You can check the following facts about the norm:

(1) For any α, β ∈ Q(
√
D), N(α)N(β) = N(αβ), and

(2) For a+ bω ∈ O = Z[ω],

N(a+ bω) =

{
a2 − b2D D = 2, 3 (mod 4)

a2 + ab+ (1−D)b2/4 D = 1 (mod 4)

so for any α ∈ O, N(α) ∈ Z.
This actually allows us to compute the units in many rings O! We can do this in both cases, but

for now we just write the case that D = 2, 3 (mod 4). If a + bω ∈ O has N(a + bω) = ±1, then
(a + bω)−1 = ±(a − bω), which is still an element of O, so is a unit. If α ∈ O is a unit, then for
some β ∈ O, αβ = 1 so N(α)N(β) = N(αβ) = N(1) = 1, but N(α) and N(β) are integers, so this
is possible only if N(α) = ±1. Therefore, α ∈ O is a unit if and only if N(α) = ±1. (This is also
true in the case D = 1 (mod 4).)

Let’s apply this: find the group of units in Z[i]. The previous computation says a+ bi is a unit
if and only if N(a+ bi) = a2 + b2 = 1. Because a and b are integers, this is possible if and only if
(a, b) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}. So, Z[i]× = {1,−1, i,−i}.

2. 7.3: Ring Homomorphisms and Quotient Rings

A few more definitions.

Definition 2.1. Let R and S be rings.

(1) A ring homomorphism is a map ϕ : R → S such that, for all a, b ∈ R, ϕ(a+b) = ϕ(a)+ϕ(b)
and ϕ(ab) = ϕ(a)ϕ(b).

(2) The kernel of ϕ is
kerϕ = {r ∈ R | ϕ(r) = 0}.

(3) An isomorphism is a bijective homomorphism.
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Example 2.2. The function ϕ : Z → Z2 given by ϕ(n) = n (mod 2) (equivalently, ϕ(n) = 0 if n is
even and ϕ(n) = 1 if n is odd) is a homomorphism. The kernel is the set of even integers.

Example 2.3. Fix r ∈ R, where R is a ring. Let evr : R[x] → R be the function evr(p(x)) = p(r)
(called ‘evaluation’ of p at r). This is a ring homomorphism:

evr(p(x) + q(x)) = p(r) + q(r) = evr(p(x)) + evr(q(x))

and
evr(p(x)q(x)) = p(r)q(r) = evr(p(x))evr(q(x)).

The kernel is precisely the set of polynomials such that p(r) = 0, i.e. the polynomials for which
r is a root.

A short proposition, whose proof we leave as an exercise:

Proposition 2.4. Let R and S be rings and ϕ : R → S a homomorphism. Then,

(1) The image of ϕ is a subring of R, and
(2) The kernel of ϕ is a subring of R. Furthermore, if a ∈ kerϕ and r ∈ R is any element, then

ar ∈ kerϕ.

This last comment on the kernel is an example of something called an ideal, which we will define
next time.
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