NOVEMBER 7 NOTES

1. 7.1: Introduction to Rings: Basic definitions and examples

Some reminders from last week:
Definition 1.1. A ring R is a set with two binary operations, + and \times (called addition and multiplication) such that:
(1) $(R,+)$ is an abelian group, where we denote the identity element by 0 and the inverse of some $a \in R$ by $-a$,
(2) \times is an associative binary operation, and
(3) the distributive laws hold: for all $a, b, c \in R$,

$$
(a+b) \times c=(a \times c)+(b \times c)
$$

and

$$
a \times(b+c)=(a \times b)+(a \times c) .
$$

Definition 1.2. Let R be a ring. R is commutative if \times is commutative. R is said to have an identity if there exists an element $1 \in R$ such that $1 \times a=a \times 1=a$ for all $a \in R$.

Definition 1.3. Let R be a ring with identity 1 where $1 \neq 0$. If every nonzero element $a \in R$ has a multiplicative inverse, i.e. for all $a \in R$ there exists $a^{-1} \in R$ such that $a a^{-1}=a^{-1} a=1$, then R is called a division ring. If R is a commutative division ring, then R is called a field.

Definition 1.4. Let R be a ring.
(1) A nonzero element $a \in R$ is called a zero divisor if there exists some $b \in R, b \neq 0$, such that $a b=0$ or $b a=0$. A commutative ring with identity $1 \neq 0$ is called an integral domain if it has no zero divisors.
(2) If R has an identity $1 \neq 0$, an element $u \in R$ is called a unit if u has a multiplicative inverse $u^{-1} \in R$. The set of all units in a ring R are by definition a group under multiplication, so is called the group of units of R and denoted by R^{\times}.

Definition 1.5. Let R be a ring. A subring of R is a subgroup of R that is closed under multiplication (i.e. a subset of R that is also a ring).

Here is an example that we started last time:
Example 1.6. Let $D \in \mathbb{Q}$ be a rational number that is not a perfect square in \mathbb{Q} (not the square of any rational number).

Let $\mathbb{Q}(\sqrt{D})=\{a+b \sqrt{D} \mid a, b \in \mathbb{Q}\} \subset \mathbb{C}\}$. This is called a quadratic field. It is a subring of \mathbb{C} because it is a subgroup of \mathbb{C} and $(a+b \sqrt{D})(c+d \sqrt{D})=(a c+b d D)+(a d+b c) \sqrt{D})$, so it is closed under multiplication. (In fact, if $\sqrt{D} \in \mathbb{R}$, it is a subring of \mathbb{R}.) It is also commutative and has identity $1=1+0 \sqrt{D})$.

It turns out that $\mathbb{Q}(\sqrt{D})$ is also a field. If $a+b \sqrt{D}$ is a nonzero element, then $a^{2}-b^{2} D \neq 0$ (this would imply that $D=a^{2} / b^{2}$ so is a perfect square) which them implies it has a multiplicative inverse given by $\frac{a-b \sqrt{D}}{a^{2}-b^{2} D}$, which can be written as $c+d \sqrt{D}$ for $c, d \in \mathbb{Q}$.

One comment: we will often assume that D is actually a square-free integer, meaning it is not divisible by the square of any prime number. Indeed, if $D=\frac{a}{b} \in \mathbb{Q}$, then $D=\frac{s^{2}}{b^{2}} D^{\prime}$ where $D^{\prime}=\frac{a}{s^{2}} b$ where s^{2} is the largest perfect square that divides a. If D is not a square and written in lowest
form (so $(a, b)=1$), then D^{\prime} is an integer that is square-free. Furthermore, $\mathbb{Q}(\sqrt{D})=\mathbb{Q}\left(\sqrt{D^{\prime}}\right)$ because $\sqrt{D}=\frac{1}{b} \sqrt{D^{\prime}}$, so $c+d \sqrt{D}=c+\frac{d}{b} \sqrt{D^{\prime}}$. Therefore, in any example of quadratic field, we can assume without any loss of generality that D is a square-free integer.

From this example, we have several interesting subrings. The following example defines several of them:

Example 1.7. If D is a square-free integer, then $\mathbb{Z}[\sqrt{D}]=\{a+b \sqrt{D} \mid a, b \in \mathbb{Z}\}$ is a subring of $\mathbb{Q}(\sqrt{D})$.

If $D=-1$, then we have the ring $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ which is called the Gaussian integers.

If $D=1(\bmod 4)$, we actually have a slightly larger interesting subring:

$$
\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]
$$

(check that this is a subring!). These are interesting for several reasons and have names.
Let $\mathcal{O}=\mathbb{Z}[\omega] \subset \mathbb{Q}(\sqrt{D})$ be the subring given by:

$$
\omega=\sqrt{D} \text { if } D=2,3 \quad(\bmod 4) \quad \omega=\frac{1+\sqrt{D}}{2} \text { if } D=1 \quad(\bmod 4) .
$$

This ring \mathcal{O} is called the ring of integers in $\mathbb{Q}(\sqrt{D})$.
On the quadratic field, we have a function called a norm:

$$
\begin{gathered}
N: \mathbb{Q}(\sqrt{D}) \rightarrow \mathbb{Q} \\
N(a+b \sqrt{D})=(a+b \sqrt{D})(a-b \sqrt{D})=a^{2}-b^{2} D .
\end{gathered}
$$

You can check the following facts about the norm:
(1) For any $\alpha, \beta \in \mathbb{Q}(\sqrt{D}), N(\alpha) N(\beta)=N(\alpha \beta)$, and
(2) For $a+b \omega \in \mathcal{O}=\mathbb{Z}[\omega]$,

$$
N(a+b \omega)=\left\{\begin{array}{ccc}
a^{2}-b^{2} D & D=2,3 & (\bmod 4) \\
a^{2}+a b+(1-D) b^{2} / 4 & D=1 & (\bmod 4)
\end{array}\right.
$$

so for any $\alpha \in \mathcal{O}, N(\alpha) \in \mathbb{Z}$.
This actually allows us to compute the units in many rings \mathcal{O} ! We can do this in both cases, but for now we just write the case that $D=2,3(\bmod 4)$. If $a+b \omega \in \mathcal{O}$ has $N(a+b \omega)= \pm 1$, then $(a+b \omega)^{-1}= \pm(a-b \omega)$, which is still an element of \mathcal{O}, so is a unit. If $\alpha \in \mathcal{O}$ is a unit, then for some $\beta \in \mathcal{O}, \alpha \beta=1$ so $N(\alpha) N(\beta)=N(\alpha \beta)=N(1)=1$, but $N(\alpha)$ and $N(\beta)$ are integers, so this is possible only if $N(\alpha)= \pm 1$. Therefore, $\alpha \in \mathcal{O}$ is a unit if and only if $N(\alpha)= \pm 1$. (This is also true in the case $D=1(\bmod 4)$.)

Let's apply this: find the group of units in $\mathbb{Z}[i]$. The previous computation says $a+b i$ is a unit if and only if $N(a+b i)=a^{2}+b^{2}=1$. Because a and b are integers, this is possible if and only if $(a, b) \in\{(1,0),(-1,0),(0,1),(0,-1)\}$. So, $\mathbb{Z}[i]^{\times}=\{1,-1, i,-i\}$.

2. 7.3: Ring Homomorphisms and Quotient Rings

A few more definitions.
Definition 2.1. Let R and S be rings.
(1) A ring homomorphism is a map $\phi: R \rightarrow S$ such that, for all $a, b \in R, \phi(a+b)=\phi(a)+\phi(b)$ and $\phi(a b)=\phi(a) \phi(b)$.
(2) The kernel of ϕ is

$$
\operatorname{ker} \phi=\{r \in R \mid \phi(r)=0\} .
$$

(3) An isomorphism is a bijective homomorphism.

Example 2.2. The function $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{2}$ given by $\phi(n)=n(\bmod 2)$ (equivalently, $\phi(n)=0$ if n is even and $\phi(n)=1$ if n is odd) is a homomorphism. The kernel is the set of even integers.

Example 2.3. Fix $r \in R$, where R is a ring. Let $e v_{r}: R[x] \rightarrow R$ be the function $e v_{r}(p(x))=p(r)$ (called 'evaluation' of p at r). This is a ring homomorphism:

$$
e v_{r}(p(x)+q(x))=p(r)+q(r)=e v_{r}(p(x))+e v_{r}(q(x))
$$

and

$$
e v_{r}(p(x) q(x))=p(r) q(r)=e v_{r}(p(x)) e v_{r}(q(x)) .
$$

The kernel is precisely the set of polynomials such that $p(r)=0$, i.e. the polynomials for which r is a root.

A short proposition, whose proof we leave as an exercise:
Proposition 2.4. Let R and S be rings and $\phi: R \rightarrow S$ a homomorphism. Then,
(1) The image of ϕ is a subring of R, and
(2) The kernel of ϕ is a subring of R. Furthermore, if $a \in \operatorname{ker} \phi$ and $r \in R$ is any element, then $a r \in \operatorname{ker} \phi$.

This last comment on the kernel is an example of something called an ideal, which we will define next time.

