
OCTOBER 31 NOTES

1. 7.1: Introduction to rings: basic definitions and examples

Definition 1.1. A ring R is a set with two binary operations, + and × (called addition and
multiplication) such that:

(1) (R,+) is an abelian group, where we denote the identity element by 0 and the inverse of
some a ∈ R by −a,

(2) × is an associative binary operation, and
(3) the distributive laws hold: for all a, b, c ∈ R,

(a+ b)× c = (a× c) + (b× c)

and
a× (b+ c) = (a× b) + (a× c).

Definition 1.2. Let R be a ring. R is commutative if × is commutative. R is said to have an
identity if there exists an element 1 ∈ R such that 1× a = a× 1 = a for all a ∈ R.

Definition 1.3. Let R be a ring with identity 1 where 1 ̸= 0. If every nonzero element a ∈ R has
a multiplicative inverse, i.e. for all a ∈ R there exists a−1 ∈ R such that aa−1 = a−1a = 1, then R
is called a division ring. If R is a commutative division ring, then R is called a field.

Example 1.4. (1) Z is a ring. It is not a division ring or a field.
(2) Q, R, and C are rings. They are all fields.
(3) Zn is a ring with + = + (mod n) and × = × (mod n). Exercise: it is a field if and only if

n = p is prime.
(4) Let H = {a+ bi+ cj + dk | a, b, c, d ∈ R, i, j, k ∈ Q8} with addition defined pointwise:

(a+ bi+ cj + dk) + (a′ + b′i+ c′j + d′k) = (a+ a′) + (b+ b′)i+ (c+ c′)j + (d+ d′)k

and multiplication defined by the distributive law. Then, one can show that H is a ring,
and in fact H is a division ring. It is not a field because multiplication is not commutative.

Some properties and other definitions:

Proposition 1.5. Let R be a ring. Then:

(1) 0a = a0 = 0 for all a ∈ R.
(2) (−a)b = a(−b) = −(ab) for all a, b ∈ R.
(3) (−a)(−b) = ab for all a, b ∈ R.
(4) If R has an identity, then it is unique and −a = (−1)a.

Definition 1.6. Let R be a ring.

(1) A nonzero element a ∈ R is called a zero divisor if there exists some b ∈ R, b ̸= 0, such
that ab = 0 or ba = 0. A commutative ring with identity 1 ̸= 0 is called an integral
domain if it has no zero divisors.

(2) If R has an identity 1 ̸= 0, an element u ∈ R is called a unit if u has a multiplicative inverse
u−1 ∈ R. The set of all units in a ring R are by definition a group under multiplication, so
is called the group of units of R and denoted by R×.

Some remarks:

• A field is a commutative ring F with identity 1 ̸= 0 such that F× = F − {0}.
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• A zero divisor in R can never be a unit: suppose a ∈ R such that ab = 0 and a−1a = 1 for
b, a−1 ∈ R. Then, b = 1b = (a−1a)b = a−1(ab) = a−10 = 0, so b = 0. Therefore, if a is a
unit, there is no nonzero b such that ab = 0.

More examples:

Example 1.7. (1) Z has no zero divisors and Z× = {1,−1}.
(2) If n is not prime, Zn has zero divisors, which cannot be units. Indeed, suppose n = ab for

a, b > 1. Then, a, b ∈ Zn, but ab = 0 (mod n), so both a and b are zero divisors.
(3) If Mn(R) is the set of all n×n matrices with entries in R, then Mn(R) is a ring. For n > 1,

it has many zero divisors. The group of units is Mn(R)× = GLn(R).

If a ring has no zero divisors/is an integral domain, then we have a cancellation law:

Proposition 1.8. If a, b, c ∈ R where R is a ring and a is not a zero divisor such that ab = ac,
then either a = 0 or b = c. In particular, if R is an integral domain and a ̸= 0, then ab = ac
implies a = c.

Proof. If ab = ac, then a(b− c) = 0. Because R has no zero divisors, then either a = 0 or b− c = 0,
i.e. b = c. □

Proposition 1.9. Any finite integral domain is a field.

Proof. Let R be a finite integral domain and let a ∈ R be a nonzero element. Let f : R → R be the
function f(x) = ax. By the cancellation law, this is an injective function, so because R is finite, it
is also surjective. Therefore, there exists some element b ∈ R such that f(b) = 1, i.e. ab = 1, so
b = a−1 exists. □

Definition 1.10. Let R be a ring. A subring of R is a subgroup of R that is closed under
multiplication (i.e. a subset of R that is also a ring).

A perhaps more interesting example of several notions above:

Example 1.11. Let D ∈ Q be a rational number that is not a perfect square in Q (not the square
of any rational number).

Let Q(
√
D) = {a + b

√
D | a, b ∈ Q} ⊂ C}. This is called a quadratic field. It is a subring of

C because it is a subgroup of C and (a + b
√
D)(c + d

√
D) = (ac + bdD) + (ad + bc)

√
D), so it is

closed under multiplication. (In fact, if
√
D ∈ R, it is a subring of R.) It is also commutative and

has identity 1 = 1 + 0
√
D).

It turns out that Q(
√
D) is also a field. If a + b

√
D is a nonzero element, then a2 − b2D ̸= 0

(this would imply that D = a2/b2 so is a perfect square) which them implies it has a multiplicative

inverse given by a−b
√
D

a2−b2D
, which can be written as c+ d

√
D for c, d ∈ Q.

One comment: we will often assume that D is actually a square-free integer, meaning it is not

divisible by the square of any prime number. Indeed, if D = a
b ∈ Q, then D = s2

b2
D′ where D′ = a

s2
b

where s2 is the largest perfect square that divides a. If D is not a square and written in lowest
form (so (a, b) = 1), then D′ is an integer that is square-free. Furthermore, Q(

√
D) = Q(

√
D′)

because
√
D = 1

b

√
D′, so c + d

√
D = c + d

b

√
D′. Therefore, in any example of quadratic field, we

can assume without any loss of generality that D is a square-free integer.

2. 7.2: More examples

Definition 2.1. Let R be a commutative ring with identity. The ring of polynomials in one
variable over R is R[x], where:

R(x) = {anxn + an−1x
n−1 + · · ·+ a1x+ a0 | n ≥ 0, ai ∈ R}.
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Addition and multiplication are defined as the usual addition and multiplication of polynomials
using the distributive law.

If p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ R[x] and an ̸= 0, then anx
n is called the leading

term, an is called the leading coefficient, and p(x) has degree n. If an = 1, the polynomial is
monic.

Example 2.2. The ring R makes a very big difference in the behavior of the polynomials. For
instance, if R = Z, then the polynomial equation x2 +1 = 0 has no solutions. But, if R = Z2, then
1 ∈ Z2 is a solution to x2 + 1 = 0 because 12 + 1 = 0 (mod 2).

If R is an integral domain, the ring R[x] behaves ‘as expected.’

Proposition 2.3. If R is an integral domain and p(x), q(x) are nonzero elements of R[x], then:

(1) deg p(x)q(x) = deg p(x) + deg q(x),
(2) R[x]× = R×, and
(3) R[x] is an integral domain.

Proof. Exercise! □

Definition 2.4. Let R be a ring and n ≥ 1 a positive integer. The ring of n× n matrices over
R is Mn(R), the set of all n× n square matrices with entries in R.

If n ≥ 2 and R has any nonzero elements, then Mn(R) is not commutative and has zero divisors.
If R has an identity 1, thenMn(R) has identity matrix with 1’s along the diagonal and 0’s elsewhere.

The group of units of Mn(R) (if R has identity) is called the general linear group GLn(R).

Definition 2.5. Let R be a commutative ring with identity 1 ̸= 0 and G = {g1, . . . , gn} any finite
group. The group ring RG is the set

RG = {a1g1 + · · ·+ angn | ai ∈ R}.
Addition is defined componentwise as for the quaternions and polynomial rings and multiplication

is defined using the distributive laws and that (agi)(bgj) = (ab)gk where gk = gigj .
From this equation, we see that RG is commutative if and only if G is a commutative group.
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