OCTOBER 31 NOTES

1. 7.1: INTRODUCTION TO RINGS: BASIC DEFINITIONS AND EXAMPLES

Definition 1.1. A ring R is a set with two binary operations, + and x (called addition and
multiplication) such that:
(1) (R,+) is an abelian group, where we denote the identity element by 0 and the inverse of
some a € R by —a,
(2) x is an associative binary operation, and
(3) the distributive laws hold: for all a,b,c € R,

(a+b) xc=(axc)+ (bxc)

and
ax (b+c)=(axb)+(axc).

Definition 1.2. Let R be a ring. R is commutative if x is commutative. R is said to have an
identity if there exists an element 1 € R such that 1 x a =a x 1 =aq for all a € R.

Definition 1.3. Let R be a ring with identity 1 where 1 # 0. If every nonzero element a € R has
a multiplicative inverse, i.e. for all a € R there exists ¢~ ! € R such that aa™! = a"'a =1, then R
is called a division ring. If R is a commutative division ring, then R is called a field.

Example 1.4. (1) Z is a ring. It is not a division ring or a field.
(2) Q, R, and C are rings. They are all fields.
(3) Zy, is a ring with + = + (mod n) and x = x (mod n). Exercise: it is a field if and only if
n = p is prime.
(4) Let H={a+bi+cj+dk]|abc,deR, i ke Qs} with addition defined pointwise:

(a+bi+cj+dk)+ (@ +Vit+dj+dk)=(a+ad)+O+b)i+ (c+)j+ (d+d)k

and multiplication defined by the distributive law. Then, one can show that H is a ring,
and in fact H is a division ring. It is not a field because multiplication is not commutative.

Some properties and other definitions:

Proposition 1.5. Let R be a ring. Then:
(1) 0Oa = a0 =0 for all a € R.
(2) (—a)b=a(—b) = —(ab) for all a,b € R.
(3) (—a)(—b) = ab for all a,b € R.
(4) If R has an identity, then it is unique and —a = (—1)a.

Definition 1.6. Let R be a ring.

(1) A nonzero element a € R is called a zero divisor if there exists some b € R, b # 0, such
that ab = 0 or ba = 0. A commutative ring with identity 1 # 0 is called an integral
domain if it has no zero divisors.

(2) If R has an identity 1 # 0, an element u € R is called a unit if u has a multiplicative inverse
u~! € R. The set of all units in a ring R are by definition a group under multiplication, so
is called the group of units of R and denoted by R*.

Some remarks:

e A field is a commutative ring F' with identity 1 # 0 such that F* = F' — {0}.
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e A zero divisor in R can never be a unit: suppose a € R such that ab =0 and ¢ 'a = 1 for
b,a=! € R. Then, b = 1b = (a 'a)b = a~'(ab) = a='0 = 0, so b = 0. Therefore, if a is a
unit, there is no nonzero b such that ab = 0.

More examples:

Example 1.7. (1) Z has no zero divisors and Z* = {1, —1}.
(2) If n is not prime, Z, has zero divisors, which cannot be units. Indeed, suppose n = ab for
a,b> 1. Then, a,b € Z,, but ab =0 (mod n), so both a and b are zero divisors.
(3) If M, (R) is the set of all n x n matrices with entries in R, then M, (R) is a ring. For n > 1,
it has many zero divisors. The group of units is M, (R)* = GL,(R).

If a ring has no zero divisors/is an integral domain, then we have a cancellation law:

Proposition 1.8. If a,b,c € R where R is a ring and a is not a zero divisor such that ab = ac,
then either a = 0 or b = c. In particular, if R is an integral domain and a # 0, then ab = ac
implies a = c.

Proof. If ab = ac, then a(b—c¢) = 0. Because R has no zero divisors, then either a = 0 or b—c¢ =0,
ie. b=c. O

Proposition 1.9. Any finite integral domain is a field.

Proof. Let R be a finite integral domain and let a € R be a nonzero element. Let f : R — R be the
function f(z) = azx. By the cancellation law, this is an injective function, so because R is finite, it
is also surjective. Therefore, there exists some element b € R such that f(b) = 1, i.e. ab =1, so
b=a""! exists. ]

Definition 1.10. Let R be a ring. A subring of R is a subgroup of R that is closed under
multiplication (i.e. a subset of R that is also a ring).

A perhaps more interesting example of several notions above:

Example 1.11. Let D € Q be a rational number that is not a perfect square in Q (not the square
of any rational number).

Let Q(vD) = {a +bV/D | a,b € Q} C C}. This is called a quadratic field. It is a subring of
C because it is a subgroup of C and (a + bv/D)(c + dv'D) = (ac + bdD) + (ad + bc)v/D), so it is
closed under multiplication. (In fact, if v/D € R, it is a subring of R.) It is also commutative and
has identity 1 =1+ O\/T))

It turns out that Q(v/D) is also a field. If a + byv/D is a nonzero element, then a? — b2D # 0
(this would imply that D = a?/b? so is a perfect square) which them implies it has a multiplicative

inverse given by 3{_bl;ég, which can be written as ¢+ dv' D for ¢,d € Q.

One comment: we will often assume that D is actually a square-free integer, meaning it is not

divisible by the square of any prime number. Indeed, if D = ¢ € Q, then D = Z—;D’ where D' = &b
where s? is the largest perfect square that divides a. If D is not a square and written in lowest
form (so (a,b) = 1), then D’ is an integer that is square-free. Furthermore, Q(vD) = Q(vD’)
because VD = 1v/D’, so ¢+ dvD = ¢+ %\/17 . Therefore, in any example of quadratic field, we
can assume without any loss of generality that D is a square-free integer.

2. 7.2: MORE EXAMPLES

Definition 2.1. Let R be a commutative ring with identity. The ring of polynomials in one
variable over R is R[z], where:

1

R(x) = {ap2™ + ap_12" '+ + a1z +ap | n >0,a; € R}.
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Addition and multiplication are defined as the usual addition and multiplication of polynomials
using the distributive law.

If p(z) = apa™ + an_12" 1+ -+ + a1z + ap € R[x] and a,, # 0, then a,z" is called the leading
term, a, is called the leading coefficient, and p(z) has degree n. If a,, = 1, the polynomial is
monic.

Example 2.2. The ring R makes a very big difference in the behavior of the polynomials. For
instance, if R = Z, then the polynomial equation 2 4+ 1 = 0 has no solutions. But, if R = Z,, then
1 € Zs is a solution to 22 + 1 = 0 because 12 +1 =0 (mod 2).

If R is an integral domain, the ring R[z] behaves ‘as expected.’

Proposition 2.3. If R is an integral domain and p(x),q(x) are nonzero elements of R[z], then:
(1) degp(x)q(x) = degp(x) + deg q(x),
(2) R[z]* = R*, and
(8) Rlz] is an integral domain.

Proof. Exercise! 0

Definition 2.4. Let R be a ring and n > 1 a positive integer. The ring of n X n matrices over
R is M, (R), the set of all n x n square matrices with entries in R.
If n > 2 and R has any nonzero elements, then M, (R) is not commutative and has zero divisors.
If R has an identity 1, then M, (R) has identity matrix with 1’s along the diagonal and 0’s elsewhere.
The group of units of M, (R) (if R has identity) is called the general linear group GL,(R).

Definition 2.5. Let R be a commutative ring with identity 1 # 0 and G = {g1,...,gn} any finite
group. The group ring RG is the set

RG ={a1g1 + -+ + angn | a; € R}.

Addition is defined componentwise as for the quaternions and polynomial rings and multiplication
is defined using the distributive laws and that (ag;)(bg;) = (ab)gxr where g, = g;9;.
From this equation, we see that RG is commutative if and only if G is a commutative group.
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