OCTOBER 31 NOTES

1. 7.1: InTRODUCTION TO RINGS: BASIC DEFINITIONS AND EXAMPLES

Definition 1.1. A ring R is a set with two binary operations, + and \times (called addition and multiplication) such that:
(1) $(R,+)$ is an abelian group, where we denote the identity element by 0 and the inverse of some $a \in R$ by $-a$,
(2) \times is an associative binary operation, and
(3) the distributive laws hold: for all $a, b, c \in R$,

$$
(a+b) \times c=(a \times c)+(b \times c)
$$

and

$$
a \times(b+c)=(a \times b)+(a \times c) .
$$

Definition 1.2. Let R be a ring. R is commutative if \times is commutative. R is said to have an identity if there exists an element $1 \in R$ such that $1 \times a=a \times 1=a$ for all $a \in R$.

Definition 1.3. Let R be a ring with identity 1 where $1 \neq 0$. If every nonzero element $a \in R$ has a multiplicative inverse, i.e. for all $a \in R$ there exists $a^{-1} \in R$ such that $a a^{-1}=a^{-1} a=1$, then R is called a division ring. If R is a commutative division ring, then R is called a field.

Example 1.4. (1) \mathbb{Z} is a ring. It is not a division ring or a field.
(2) \mathbb{Q}, \mathbb{R}, and \mathbb{C} are rings. They are all fields.
(3) \mathbb{Z}_{n} is a ring with $+=+(\bmod n)$ and $\times=\times(\bmod n)$. Exercise: it is a field if and only if $n=p$ is prime.
(4) Let $\mathbb{H}=\left\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}, \quad i, j, k \in Q_{8}\right\}$ with addition defined pointwise:
$(a+b i+c j+d k)+\left(a^{\prime}+b^{\prime} i+c^{\prime} j+d^{\prime} k\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) i+\left(c+c^{\prime}\right) j+\left(d+d^{\prime}\right) k$
and multiplication defined by the distributive law. Then, one can show that \mathbb{H} is a ring, and in fact \mathbb{H} is a division ring. It is not a field because multiplication is not commutative.

Some properties and other definitions:
Proposition 1.5. Let R be a ring. Then:
(1) $0 a=a 0=0$ for all $a \in R$.
(2) $(-a) b=a(-b)=-(a b)$ for all $a, b \in R$.
(3) $(-a)(-b)=a b$ for all $a, b \in R$.
(4) If R has an identity, then it is unique and $-a=(-1) a$.

Definition 1.6. Let R be a ring.
(1) A nonzero element $a \in R$ is called a zero divisor if there exists some $b \in R, b \neq 0$, such that $a b=0$ or $b a=0$. A commutative ring with identity $1 \neq 0$ is called an integral domain if it has no zero divisors.
(2) If R has an identity $1 \neq 0$, an element $u \in R$ is called a unit if u has a multiplicative inverse $u^{-1} \in R$. The set of all units in a ring R are by definition a group under multiplication, so is called the group of units of R and denoted by R^{\times}.
Some remarks:

- A field is a commutative ring F with identity $1 \neq 0$ such that $F^{\times}=F-\{0\}$.
- A zero divisor in R can never be a unit: suppose $a \in R$ such that $a b=0$ and $a^{-1} a=1$ for $b, a^{-1} \in R$. Then, $b=1 b=\left(a^{-1} a\right) b=a^{-1}(a b)=a^{-1} 0=0$, so $b=0$. Therefore, if a is a unit, there is no nonzero b such that $a b=0$.
More examples:
Example 1.7. (1) \mathbb{Z} has no zero divisors and $\mathbb{Z}^{\times}=\{1,-1\}$.
(2) If n is not prime, \mathbb{Z}_{n} has zero divisors, which cannot be units. Indeed, suppose $n=a b$ for $a, b>1$. Then, $a, b \in \mathbb{Z}_{n}$, but $a b=0(\bmod n)$, so both a and b are zero divisors.
(3) If $M_{n}(\mathbb{R})$ is the set of all $n \times n$ matrices with entries in \mathbb{R}, then $M_{n}(\mathbb{R})$ is a ring. For $n>1$, it has many zero divisors. The group of units is $M_{n}(\mathbb{R})^{\times}=G L_{n}(\mathbb{R})$.

If a ring has no zero divisors/is an integral domain, then we have a cancellation law:
Proposition 1.8. If $a, b, c \in R$ where R is a ring and a is not a zero divisor such that $a b=a c$, then either $a=0$ or $b=c$. In particular, if R is an integral domain and $a \neq 0$, then $a b=a c$ implies $a=c$.

Proof. If $a b=a c$, then $a(b-c)=0$. Because R has no zero divisors, then either $a=0$ or $b-c=0$, i.e. $b=c$.

Proposition 1.9. Any finite integral domain is a field.
Proof. Let R be a finite integral domain and let $a \in R$ be a nonzero element. Let $f: R \rightarrow R$ be the function $f(x)=a x$. By the cancellation law, this is an injective function, so because R is finite, it is also surjective. Therefore, there exists some element $b \in R$ such that $f(b)=1$, i.e. $a b=1$, so $b=a^{-1}$ exists.

Definition 1.10. Let R be a ring. A subring of R is a subgroup of R that is closed under multiplication (i.e. a subset of R that is also a ring).

A perhaps more interesting example of several notions above:
Example 1.11. Let $D \in \mathbb{Q}$ be a rational number that is not a perfect square in \mathbb{Q} (not the square of any rational number).

Let $\mathbb{Q}(\sqrt{D})=\{a+b \sqrt{D} \mid a, b \in \mathbb{Q}\} \subset \mathbb{C}\}$. This is called a quadratic field. It is a subring of \mathbb{C} because it is a subgroup of \mathbb{C} and $(a+b \sqrt{D})(c+d \sqrt{D})=(a c+b d D)+(a d+b c) \sqrt{D})$, so it is closed under multiplication. (In fact, if $\sqrt{D} \in \mathbb{R}$, it is a subring of \mathbb{R}.) It is also commutative and has identity $1=1+0 \sqrt{D})$.

It turns out that $\mathbb{Q}(\sqrt{D})$ is also a field. If $a+b \sqrt{D}$ is a nonzero element, then $a^{2}-b^{2} D \neq 0$ (this would imply that $D=a^{2} / b^{2}$ so is a perfect square) which them implies it has a multiplicative inverse given by $\frac{a-b \sqrt{D}}{a^{2}-b^{2} D}$, which can be written as $c+d \sqrt{D}$ for $c, d \in \mathbb{Q}$.

One comment: we will often assume that D is actually a square-free integer, meaning it is not divisible by the square of any prime number. Indeed, if $D=\frac{a}{b} \in \mathbb{Q}$, then $D=\frac{s^{2}}{b^{2}} D^{\prime}$ where $D^{\prime}=\frac{a}{s^{2}} b$ where s^{2} is the largest perfect square that divides a. If D is not a square and written in lowest form (so $(a, b)=1$), then D^{\prime} is an integer that is square-free. Furthermore, $\mathbb{Q}(\sqrt{D})=\mathbb{Q}\left(\sqrt{D^{\prime}}\right)$ because $\sqrt{D}=\frac{1}{b} \sqrt{D^{\prime}}$, so $c+d \sqrt{D}=c+\frac{d}{b} \sqrt{D^{\prime}}$. Therefore, in any example of quadratic field, we can assume without any loss of generality that D is a square-free integer.

2. 7.2: More examples

Definition 2.1. Let R be a commutative ring with identity. The ring of polynomials in one variable over R is $R[x]$, where:

$$
R(x)=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \mid n \geq 0, a_{i} \in R\right\} .
$$

Addition and multiplication are defined as the usual addition and multiplication of polynomials using the distributive law.

If $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in R[x]$ and $a_{n} \neq 0$, then $a_{n} x^{n}$ is called the leading term, a_{n} is called the leading coefficient, and $p(x)$ has degree n. If $a_{n}=1$, the polynomial is monic.

Example 2.2. The ring R makes a very big difference in the behavior of the polynomials. For instance, if $R=\mathbb{Z}$, then the polynomial equation $x^{2}+1=0$ has no solutions. But, if $R=\mathbb{Z}_{2}$, then $1 \in \mathbb{Z}_{2}$ is a solution to $x^{2}+1=0$ because $1^{2}+1=0(\bmod 2)$.

If R is an integral domain, the ring $R[x]$ behaves 'as expected.'
Proposition 2.3. If R is an integral domain and $p(x), q(x)$ are nonzero elements of $R[x]$, then:
(1) $\operatorname{deg} p(x) q(x)=\operatorname{deg} p(x)+\operatorname{deg} q(x)$,
(2) $R[x]^{\times}=R^{\times}$, and
(3) $R[x]$ is an integral domain.

Proof. Exercise!
Definition 2.4. Let R be a ring and $n \geq 1$ a positive integer. The ring of $n \times n$ matrices over R is $M_{n}(R)$, the set of all $n \times n$ square matrices with entries in R.

If $n \geq 2$ and R has any nonzero elements, then $M_{n}(R)$ is not commutative and has zero divisors. If R has an identity 1 , then $M_{n}(R)$ has identity matrix with 1 's along the diagonal and 0 's elsewhere. The group of units of $M_{n}(R)$ (if R has identity) is called the general linear group $G L_{n}(R)$.
Definition 2.5. Let R be a commutative ring with identity $1 \neq 0$ and $G=\left\{g_{1}, \ldots, g_{n}\right\}$ any finite group. The group ring $R G$ is the set

$$
R G=\left\{a_{1} g_{1}+\cdots+a_{n} g_{n} \mid a_{i} \in R\right\} .
$$

Addition is defined componentwise as for the quaternions and polynomial rings and multiplication is defined using the distributive laws and that $\left(a g_{i}\right)\left(b g_{j}\right)=(a b) g_{k}$ where $g_{k}=g_{i} g_{j}$.

From this equation, we see that $R G$ is commutative if and only if G is a commutative group.

