OCTOBER 24 NOTES

1. SOME REVIEW AND OTHER EXAMPLES

Today, we did several examples of problems related to the Sylow theorems and semi-direct
products.
Here is a review of the relevant definitions/theorems:

Definition 1.1. Let G be a group and let p be a prime.

(1) A group of order p* for some k > 1 is called a p-group. Subgroups which are p-groups are
called p-subgroups.

(2) If G has order p*m where p f m, then a subgroup of order p” is called a Sylow-p-subgroup.

(3) The set of Sylow p-subgroups is denoted by Syl,(G) and the number of Sylow p-subgroups
in a particular group is denoted by n,,.

Theorem 1.2. Let G be a group of order p*m, where p is a prime not dividing m. Then:
(1) Sylow p-subgroups ezist, i.e. n, # 0.
(2) If P is a Sylow-p-subgroup and Q is any p-subgroup, then for some g € G, Q < gPg~'. In
particular, any two Sylow p-subgroups are conjugate.
(8) The number of Sylow p-subgroups is of the form 1+ap for some a > 0, i.e. n, =1 (mod p).
Furthermore, n, =[G : Ng(P)], so n, | m.

Definition 1.3. Let H and K be groups and let ¢ : K — Aut(H) be a homomorphism. Given
k € K, let ¢y, denote the automorphism of H given by ¢(k). Then, theset G = {(h,k) | h € H,k € K}
is a group with binary operation (hi, k1) - (he, k2) = (h1dk, (he), ki1k2).

This is called the semi-direct product of H and K, denoted H x4 K.

Notation. As in the definition, we will use the following notation: for ¢ : K — Aut(H) and
k € K, each ¢(k) is an automorphism of H, i.e. ¢(k) is a function ¢(k) : H — H. So, we can plug
in values of h to ¢(k): ¢(k)(h) is the function ¢(k) evaluated at h € H. Instead of writing ¢(k)(h),
we will write ¢ (h).

We use semidirect products as follows:

Theorem 1.4. Suppose G is a group with a normal subgroup H and another subgroup K with
HNK =1 such that HK = G. Then, G = H x4 K for some homomorphism ¢ : K — Aut(H).

A few remarks before we use this:

o If ¢ : K — Aut(H) is the trivial homomorphism, meaning ¢(k) is the identity in Aut(H)
for all K € K, then ¢i(h) is the identity function. In other words, ¢x(h) = h. So, the
semidirect product has binary operation (hi, k1)(ha, k2) = (hi1¢k, (h2), k1ka) = (hihe, ki1ks).
This is just the usual direct product. In other words, if ¢ : K — Aut(H) is trivial,
then H x4y K = H x K.

e We will need to know something about Aut(H) for various groups H. Often, these will be
Sylow p-subgroups of the form H = Z,. On your homework, you computed Aut(Z,), which
we recall here: every f € Aut(Z,) is of the form f(z) = azx (mod n) for some a € ZJ,
where Z} = {a € Z,, | (a,n) = 1} (which is a group under multiplication). In fact, you
showed that Aut(Z,) = Z).

o If ¢: K — Aut(H) is a homomorphism, then ord(¢(k)) must divide ord(k). This helps us
to understand exactly what possiblities we have for ¢.
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e We can often use the explicit understanding of automorphism groups to write down gener-
ators and relations for semidirect products. Let’s seem some examples!

Example 1.5. Suppose |G| = 10. What are the possible groups of order 10?7

By the Sylow Theorems, because 10 =52, and 5 > 2, the Sylow 5-subgroup H = Zjs is normal.
There exists a 2-Sylow subgroup K = Zs which is not necessarily normal.

To classify all possible groups of order 10, we just need to understand the possible homomor-
phisms ¢ : K = Zy — Aut(Zs) = Z2 = {1,2,3,4}. We have two elements in Zy, 0 and 1. Because
¢ is a homomorphism ¢(0) must be the identity in Aut(Zs), i.e. ¢o(x) = z. We have a few
choices for ¢(1): because, in Zg, ord(1) = 2, we know ¢(1) has order dividing 2, so ord(¢(1)) is
either 1 or 2. Using the description of Aut(Zs) = Z2 = {1,2,3,4}, the orders of these elements
(remember: binary operation is multiplication mod 5) are 1,4,4, and 2. So, ¢(1) can either be the
automorphism corresponding to 1, the identity, ¢1(z) = x, or the automorphism corresponding to
4, s0 ¢1(x) = 4x.

There are only two possible homomorphisms to Aut(H), so only two possible groups. The first
is the trivial homomorphism, sending everything to the identity, so the first semidirect product is
HXK2Z5XZQEJZ1O.

The second is the homomorphism where ¢g(x) = = and ¢;1(z) = 4x. We have actually seen this
group before! Write r = (1,0) € G and write s = (0,1) € G. Then, we certainly have the elements
Lr, 2,73, 7% and s,7s,7%s,r3s,7%s in G, but we can say more! We know 7° = 1 and s?> = 1, and
let us compute sr:

sr=(0,1)-(1,0) = (0 + ¢1(1),1 +0) = (4,1)
(remember, ¢1(1) = 4(1) = 4 in Zs). Because

s =(4,0) (0,1) = (44 ¢1(0),0 + 1) = (4,1)

We see that sr = r*s, so this is exactly the dihedral group D!

In fact, this is true in much more generality that Do, = Z, X4 Zo where ¢ : Zy — Aut(Zy) is
the function assigning 1 to ¢1(z) = (n — 1)z!

The punchline: there are only two groups of order 10, either Zig or Dig.

A few other things from class:

Example 1.6. Classify groups of order 15. (We already know this, but let’s see what the Sylow
theorems in this way say.)

As above, the Sylow 5-subgroup H = Zs must be normal. Let K = Zs be the Sylow 3-subgroup.

We know G = H x4 K where ¢ is some homomorphism ¢ : K — Aut(H). So, ¢ : Zg — Aut(Zs) =
As above, ¢(1) must be an element of order dividing 3, so ord(¢(1)) is 1 or 3. BUT, no elements
of Aut(Zs) have order 3, so we must have ¢(1) is the identity (the only element of order 1).
Similarly, ¢(2) is the identity. So, ¢ must in fact be the trivial homomorphism, and hence
G=Hxx K =17s5 x Zs.

Example 1.7. (Old qualifying problem.) Show that there are at least two non-isomorphic, non-
abelian groups of order 147 = 3 - 75.

(Possibly useful facts: 183 = 1 (mod 49) and 22 =1 (mod 7).)

We construct these using semidirect products and the Sylow Theorems. Suppose |G| = 147. By
the Sylow theorems, the Sylow 7-subgroup is normal: n7 =1 (mod 7) and n7 | 3, so ny = 1. The
Sylow 3-subgroup may or may not be normal: ng = 1 (mod 3) and n3 (mod 4)9, so ng could be
1,7, or 49.

The Sylow 7-subgroup H has 49 elements, so by the classification of groups of order p?, H = Zag
or H = Z7 X Z7. In each case, we will write G = H x K so will find two non-isomorphic groups
(because their Sylow subgroups are not the same).
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In both cases, let K be a Sylow 3-subgroup. Because |K| = 3, K = Zs. If H = Z49, we can
construct a semidirect product H x4 K. Let ¢ : K = Zg — Aut(H) = Zjy be the map sending 1 to
the automorphism ¢ (z) = 182 (mod 49). This is a non-trivial homomorphism (we are using that
the order of 18 in Z4g is 3 by the possibly useful fact). Then, G1 = H x4 K is a group of order
147 with a Sylow 7-subgroup isomorphic to Zgg. It is also non-abelian: (1,0)-(0,1) = (1,1) but
(0,1)-(1,0) = (0 + ¢1(1),1 4+ 0), but ¢ is the automorphism corresponding to 18 in Aut(H), i.e.
@1 : Lag — Zyg9 is the map ¢1(z) = 18z. So, (0,1) - (1,0) = (0+ ¢1(1),14+0) = (18,1).

Similarly, if H = Z7 x Z7, there is an automorphism of order 3 given by (a,b) — (2a,b). Let
¢ : K — Aut(H) be the map sending 1 € Z3 = K to this automorphism. Then, Go = H x4 K
is a group of order 147 with a Sylow 7-subgroup isomorphic to Z7 X Zz, so Go % G1, and G4 is
non-abelian by similar reasoning as that above.

(There are several other non-abelian groups one could list here.)
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