
OCTOBER 19 NOTES

1. 4.5: The Sylow Theorems

A reminder of the Sylow theorems:

Definition 1.1. Let G be a group and let p be a prime.

(1) A group of order pk for some k ≥ 1 is called a p-group. Subgroups which are p-groups are
called p-subgroups.

(2) If G has order pkm where p ∤ m, then a subgroup of order pk is called a Sylow-p-subgroup.
(3) The set of Sylow p-subgroups is denoted by Sylp(G) and the number of Sylow p-subgroups

in a particular group is denoted by np.

Theorem 1.2. Let G be a group of order pkm, where p is a prime not dividing m. Then:

(1) Sylow p-subgroups exist, i.e. np ̸= 0.
(2) If P is a Sylow-p-subgroup and Q is any p-subgroup, then for some g ∈ G, Q ≤ gPg−1. In

particular, any two Sylow p-subgroups are conjugate.
(3) The number of Sylow p-subgroups is of the form 1+ap for some a ≥ 0, i.e. np ≡ 1 (mod p).

Furthermore, np = [G : NG(P )], so np | m.

We proved (1) last time. We will prove the remaining parts on Tuesday. Today, we will focus on
using the Sylow Theorems.

2. 5.1: Direct Products

We begin with reminders on direct products.

Definition 2.1. If G1, G2, . . . are groups, then their direct product is

G1 ×G2 × · · · = {(g1, g2, . . . ) | gi ∈ Gi}

with binary operation

(g1, g2, . . . ) ⋆ (h1, h2, . . . ) = (g1h1, g2h2, . . . ).

Remark 2.2. By definition of the set G1 ×G2 × . . . , we have |G1 ×G2 × . . . | = |G1||G2| . . . .
The identity in the direct product is the element (1, 1, . . . ).
The inverse is the element (g1, g2, . . . )

−1 = (g−1
1 , g−1

2 , . . . ).

We have the following proposition, whose proof is left as an exercise.

Proposition 2.3. Let G = G1 ×G2 × · · · ×Gn.

(1) For each i, Gi is isomorphic to a subgroup of G given by Gi
∼= {(1, 1, . . . , 1, gi, 1, . . . , 1) | gi ∈ Gi}

(the gi appears in the ith spot.
(2) If we identify Gi with this subgroup, then Gi�G and G/Gi

∼= G1×· · ·×Gi−1×Gi+1×· · ·×Gn.
(3) For each i, there is a surjective projection homomorphism πi : G → Gi given by πi(g1, . . . , gn) = gi.

The kernel is

kerπi = {(g1, . . . , gi−1, 1, gi+1, . . . , gn) | gj ∈ Gj} ∼= G1 × · · · ×Gi−1 ×Gi+1 × · · · ×Gn.

Example 2.4. We already saw the group Zp × Zp as one of the two groups of order p2 in the
previous section.
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3. 5.2: Fundamental Theorem of Finitely Generated Abelian Groups

We use direct products to classify all finitely generated abelian groups. We will actually prove
this theorem at the end of the semester by the classification of finitely generated modules over
PIDs.

Definition 3.1. A group G is finitely generated if there is a finite subset A ⊂ G such that
G = ⟨A⟩.

Example 3.2. For each r ∈ Z, the group Zr = Z×Z× · · ·×Z (r copies of Z) is finitely generated.
It is called the free abelian group of rank r.

Theorem 3.3. Let G be a finitely generated abelian group. Then:

G ∼= Zr × Zq1 × Zqs

where r ≥ 0 and each qi is a power of a (not necessarily distinct) prime number.
If G is finite with |G| = n, then

G ∼= Zq1 × Zqs

where n = q1 × qs and each qi is a power of a (not necessarily distinct) prime.

Example 3.4. Suppose |G| = 20. Then 20 = 22 · 5, so the possible abelian groups of order 20 are
Z4 × Z5 or Z2 × Z2 × Z5.

Proposition 3.5. If G = Zn × Zm and gcd(n,m) = 1, then G ∼= Znm.

Proof. Exercise: verify that the map Znm → Zn ×Zm given by a 7→ (a (mod n), a (mod m)) is an
isomorphism, or verify that ord(1, 1) ∈ Zn × Zm is nm, so that Zn × Zm must be cyclic. □

Using the proposition, we could write the groups in the previous example alternatively as: Z20

or Z2 × Z10.
We will attempt to classify groups of small order using direct products (but will shortly generalize

to semidirect products).

4. 5.4: Recognizing Direct Products

If we can find two normal subgroups of G such that H ∩K = {1} (which occurs, for example, if
|H| and |K| are relatively prime) and |G| = |H||K| and, then G must be the direct product of H
and K.

Theorem 4.1. Suppose G is a group with normal subgroups H and K with H ∩K = 1 such that
HK = G. Then, G ∼= H ×K.

Proof. Because G = HK, every element g ∈ G can be written as g = hk for h ∈ H, k ∈ K. Because
H ∩ K = 1, this is actually unique. Indeed, suppose g = hk = h′k′. Then, h−1h′ = k(k′)−1, so
h−1h′ ∈ K and hence h−1h′ ∈ H ∩K so h−1h′ = 1, so h = h′, and similarly k = k′.

Therefore, we have a function ϕ : G = HK → H × K given by ϕ(hk) = (h, k). This is a
well-defined bijection by the uniqueness statement above, so we just need to show that it is a
homomorphism.

To show this, it suffices to show that h1k1h2k2 = h1h2k1k2 for any hi ∈ H, ki ∈ K, which is
equivalent to k1h2 = h2k1, which is equivalent to k1h2k

−1
1 h−1

2 = 1. Because H is normal, we know

k1h2k
−1
1 ∈ H, so k1h2k

−1
1 h−1

2 ∈ H. Similarly, k1h2k
−1
1 h−1

2 ∈ K, so k1h2k
−1
1 h−1

2 ∈ H ∩K = 1, and

therefore k1h2k
−1
1 h−1

2 = 1. □

Example 4.2. Let G be a group of order 15. Then, by the Sylow Theorems, both the Sylow
3-subgroup H (with H ∼= Z3) and the Sylow 7-subgroup K (with K ∼= Z5) are normal, and
(3, 5) = 1, so |H ∩ K| = 1 and |H||K| = |G|. Therefore, the previous theorem implies that
G ∼= H ×K ∼= Z3 × Z5

∼= Z15. So, there is only one group of order 15.
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5. 5.5: Semidirect Products

Finally, we conclude group theory with semidirect products. We wish to generalize the previous
section to classify groups G with subgroups H and K such that H ∩K = 1, H is normal in G (but
K is not necessarily!) and |H||K| = |G|. It turns out we have an analogue of the direct product
that we can use to classify these!

In the previous proof, we needed to compute (h1k1)(h2k2). If only H is normal, we can write
this as

h1k1h2k2 = h1k1h2k
−1
1 k1k2 = h1h3k1k2

where h3 = k1h2k
−1
1 is the conjugation of h2 by k1. This is an automorphism of H. So we

will construct a group that ‘looks like’ a product but instead of (h1, k1)(h2, k2) = (h1h2, k1k2),
we will have the binary operation given by (h1, k1)(h2, k2) = (h1ϕk1(h2), k1k2) where ϕk1 is some
automorphism of H induced by k1 ∈ K.

We state the general construction.

Definition 5.1. Let H and K be groups and let ϕ : K → Aut(H) be a homomorphism. Given
k ∈ K, let ϕk denote the automorphism ofH given by ϕ(k). Then, the setG = {(h, k) | h ∈ H, k ∈ K}
is a group with binary operation (h1, k1) · (h2, k2) = (h1ϕk1(h2), k1k2).

This is called the semi-direct product of H and K, denoted H ⋊ϕ K.

By definition of semidirect product, we have the following:

Theorem 5.2. Suppose G is a group with a normal subgroup H and another subgroup K with
H ∩ K = 1 such that HK = G. Let ϕ : K → Aut(H) be the homomorphism sending k to
conjugation by k. Then, G ∼= H ⋊ϕ K.

Note that semidirect products are rarely abelian, even if H and K are themselves abelian:
(h1, k1)·(h2, k2) = (h1ϕk1(h2), k1k2) is typically not the same as (h2, k2)·(h1, k1) = (h2ϕk2(h1), k2k1)
because there is no reason that ϕk1(h2) = ϕk2(h1).

Let us do some examples!

Example 5.3. Suppose |G| = 10. What are the possible groups of order 10?
By the Sylow Theorems, because 10 = 5 · 2, and 5 > 2, the Sylow 5-subgroup H ∼= Z5 is normal.

There exists a 2-Sylow subgroup K ∼= Z2 which is not necessarily normal.
To classify all possible groups of order 10, we just need to understand the possible homomor-

phisms ϕ : K ∼= Z2 → Aut(Z5) = Z×
5

∼= Z4. By properties of cyclic groups, there are only two
possible ϕ: 1 ∈ K has order 2, so must map to an element of order dividing 2, so ϕ(1) = 0, which
is the identity, or ϕ(1) = 2.

Note: in certain cases, like this one, we actually know the automorphisms given by ϕ. If
the automorphism is the identity, then it is the function that does nothing, so the semidirect
product is just the usual direct production. But in this case, we actually even know what the other
automorphism is. For instance, H is abelian, and for any abelian group, there is an automorphism
of order 2 given by g 7→ g−1. Because Aut(Z5) only has one element of order 2, it must actually be
this inversion automorphism. We will discuss this on Monday!

There are only two possible homomorphisms to Aut(H), so only two possible groups. The first
is the identity, so the first semidirect product is H ×K ∼= Z5 × Z2

∼= Z10.
The second is this inversion automorphism (call it ϕ) so it says the second possible semidirect

product is G = Z5 ⋊ϕ Z2. W
On Monday, we will show that we have seeen this group before! As a preview: write r = (1, 0) ∈ G

and write s = (0, 1) ∈ G. Then, we certainly have the elements 1, r, r2, r3, r4 and s, rs, r2s, r3s, r4s
in G, but we can say more! We know r5 = 1 and s2 = 1, and let us compute sr:

sr = (0, 1) · (1, 0) = (0 + ϕ1(1), 1 + 0) = (4, 1)
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(remember, ϕ1(1) is the inverse of 1, which is 4 in Z5). Because

r4s = (4, 0) · (0, 1) = (4 + ϕ1(0), 0 + 1) = (4, 1)

We see that sr = r4s, so this is exactly the dihedral group D10! In fact, this is true in much more
generality that D2n

∼= Zn ⋊ϕ Z2 where ϕ : Z2 → Aut(Zn) is the function assigning 1 to inversion!
The punchline: there are only two groups of order 10, either Z10 or D10.

We will do more examples next time, but in summary: combining our knowledge of the Sylow
theorems, group actions, and automorphisms with this new tool of semidirect products, we can
effectively classify finite groups (at least of small order).
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