
OCTOBER 17 NOTES

1. 4.4: Automorphisms

.

Definition 1.1. Let G be an group. An isomorphism ϕ : G → G is called an automorphism of
G. The set of all automorphisms of G forms a group under composition and is denoted Aut(G).

Proposition 1.2. If H�G, then G acts by conjugation on H as automorphisms of H. Specifically,
g ∈ G acts on H by h 7→ ghg−1, and this is an automorphism of H because H is normal.

Corollary 1.3. The permutation representation of this action gives a homomorphism ϕ : G → Aut(H).
The kernel is, by definition, CG(H), so by the First Isomorphism Theorem, G/CG(H) is isomorphic
to a subgroup of Aut(H).

Corollary 1.4. For any H ≤ G, H � NG(H), so NG(H)/CG(H) is isomorphic to a subgroup of
Aut(H). In particular, for any group G, G/Z(G) is isomorphic to a subgroup of Aut(G).

Definition 1.5. If G is a group and g ∈ G, conjugation by g is called an inner automorphism
of G. The subgroup of all inner automorphisms in Aut(G) is denoted by Inn(G).

By the previous corollary, Inn(G) ∼= G/Z(G).

Let us use these abstract ideas to classify groups.

Proposition 1.6. The automorphism group of Zn is isomorphic to Z×
n , an abelian group of order

ϕ(n). If n is prime, this is an abelian group of order n− 1.

Proof. Recall that Z×
n = {a ∈ Zn | (a, n) = 1} and the binary operation is multiplication mod n.

Exercise: if ϕ ∈ Aut(Zn), then ϕ(x) = ax mod n for some a ∈ Zn. (This is in fact true for any
homomorphism ϕ : Zn → Zn!)

If ϕ is an automorphism, then x and ax must have the same order, so we must have that
ord(x) = ord(ax) = ord(x)/(a, n), so we must have (a, n) = 1, i.e. a ∈ Z×

n .
This gives a homomorphism Aut(Zn) → Z×

n by a 7→ a which one can check is an isomorphism. □

Now, a result on arbitrary groups!

Proposition 1.7. If |G| = pq where p, q are primes with p ≤ q such that p ∤ q − 1, then G is
abelian.

Proof. First, suppose Z(G) ̸= {1}. Then, G/Z(G) has order 1, p, or q, so must be cyclic which
implies that G is abelian.

Now suppose Z(G) = {1}. If every non-identity element has order p, then the centralizer of
each non-identity element has index q, so by the class equation, pq = 1 + kq for some k ∈ Z, but
this is impossible since q ∤ 1. So, G contains an element x of order q. Let H = ⟨x⟩. Because
[G : H] = pq/q = p and p is the smallest prime dividing |G|, H is a normal subgroup of G. Since
H ≤ CG(H) ≤ G, we must have |CG(H)| = q or pq. It cannot be pq because then CG(H) = G so
every element of H would commute with every element of G, which would imply H ≤ Z(G) = {1},
impossible. Therefore, |CG(H)| = q so CG(H) = H. And, NG(H) = G because H is normal, so
NG(H)/CG(H) = G/H is a group of order p isomorphic to a subgroup of Aut(H). But, H is cyclic
of order q, so Aut(H) has order q − 1! Because p does not divide q − 1, which is a contradiction.
So, Z(G) ̸= {1}. □

On your homework, you will prove that G in the previous proposition must actually be cyclic.
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2. 4.5: The Sylow Theorems

Now, we will generalize the previous result to groups of small order!

Definition 2.1. Let G be a group and let p be a prime.

(1) A group of order pk for some k ≥ 1 is called a p-group. Subgroups which are p-groups are
called p-subgroups.

(2) If G has order pkm where p ∤ m, then a subgroup of order pk is called a Sylow-p-subgroup.
(3) The set of Sylow p-subgroups is denoted by Sylp(G) and the number of Sylow p-subgroups

in a particular group is denoted by np.

Theorem 2.2. Let G be a group of order pkm, where p is a prime not dividing m. Then:

(1) Sylow p-subgroups exist, i.e. np ̸= 0.
(2) If P is a Sylow-p-subgroup and Q is any p-subgroup, then for some g ∈ G, Q ≤ gPg−1. In

particular, any two Sylow p-subgroups are conjugate.
(3) The number of Sylow p-subgroups is of the form 1+ap for some a ≥ 0, i.e. np ≡ 1 (mod p).

Furthermore, np = [G : NG(P )], so np | m.

Note the following observation:

Corollary 2.3. If P is a Sylow p-subgroup of a group G, then np = 1 if and only if P is normal
in G.

We will primarily use this result to classify groups in the next chapter. We will primarily use it
to produce normal subgroups of groups; we’ll see an example first.

Example 2.4. If |G| = pq with p < q (p, q prime), then the Sylow-q-subgroup is normal.
By the Sylow Theorem, because |G| = q1(p), nq = 1 mod q and nq divides p, but p < q so we

must have nq = 1. Therefore, there is only one subgroup Q of order q. Because |gQg−1| = |Q| for
any g, we must have that gQg−1 = Q so Q is normal.

Knowing this, we could try to classify G by starting with Q ∼= Zp and classifying G/Q (in this
case, G/Q has order p, so G/Q ∼= Zp). We then could try to ‘combine’ Q and G/Q to get G.

Let us consider np. Since np must divide q, then we must have np = 1 or q. Also, np = 1 mod p,
so if q ̸= 1 (mod p) (or p ∤ q − 1), we must have np = 1. In this case, P � G. Let P = ⟨x⟩ and
Q = ⟨y⟩. In the case P � G, then G/CG(P ) is isomorphic to a subgroup of Aut(P ) = Aut(Zp),
and |Aut(Zp)| = p− 1, so pq/|CG(P )| divides p− 1. This is possible if and only if |CG(P )| = pq or
CG(P ) = G. Therefore, every element of G commutes with x, so x ∈ Z(G) and x and y commute.
Therefore, ord(xy) = pq (exercise!) so we must have G = ⟨xy⟩ ∼= Zpq and in fact we will see later

that P ×Q ∼= G by the isomorphism (xnyn) 7→ (xn (mod p), yn (mod q)).
What if P ̸ �G? We will still be able to use the Sylow Theorems to show that G ∼= P ⋊Q where

⋊ will denote a semidirect product.

Now the proof! We only proved part (1) in class.

Proof. For (1), We use induction on |G|, with the result clear if |G| = 1. Assume now that Sylow
p-subgroups exist for all groups of order less than |G|.

If p | |Z(G)|, then because Z(G) is abelian, it has a subgroup N of order p. Then, |G/N | = pk−1m
and G/N has a subgroup P/N of order pk−1. By the fourth isomorphism theorem, P is a subgroup
of G of order |P | = |P/N ||N | = pk, so a Sylow p-subgroup exists.

Now, suppose p ∤ |Z(G)|. From the class equation, we must have p ∤ [G : CG(gi)] for some gi.
Let H = CG(gi), so |H| = pkl where p ∤ l and gi /∈ Z(G) so H < G. By induction, H has a Sylow
p-subgroup P , which is also a subgroup of G, so G has a Sylow p-subgroup.

Now we have shown that a p-subgroup exists. Let S = {P1, P2, . . . , Pr} be the set of all conjugates
of P , so S = {gPg−1 | g ∈ G}. Let Q be any p-subgroup. By definition, Q acts on S by conjugation.
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Write S = O1 ∪ · · · ∪Os as a union of orbits of this action. Note that r =
∑

|Oi|. We may assume,
by renumbering, that Pi ∈ Oi, for 1 ≤ i ≤ s. From a previous proposition, |Oi| = [Q : NQ(Pi)] and
by definition, NQ(Pi) = NG(Pi)∩Q = Pi∩Q by the following lemma. Therefore, |Oi| = [Q : Pi∩Q].

This previous paragraph holds for any subgroup Q, so let Q = P1. Then, |O1| = 1, and Pi ̸= P1

for i > 1, so P1 ∩ Pi < P1, and |Oi| = [P1 : P1 ∩ Pi] > 1, but P1 is a p-group, so p | |Oi| for each
2 ≤ i ≤ s. Therefore, r =

∑
|Oi| = 1 + kp = 1 (mod p).

Finally, we prove parts (2) and (3) of the theorem. Let Q be any p-subgroup. If Q is not
contained in any Pi (i.e. Q ̸≤ gPg−1), then Q ∩ Pi < Q for all i, so considering the action of Q,
we have |Oi| = [Q : Pi ∩Q] > 1 so must have p | |Oi| for each i, a contradiction to r = 1 (mod p).
This proves (2).

For (3), let Q be any Sylow p-subgroup. We know Q ≤ gPg−1 for some g by (2), but these groups
must have the same size, so we must have Q = gPg−1 is conjugate to P . and therefore every Sylow
p-subgroup is one of the Pi, so the number of such subgroups is np = r = 1 (mod p). □

In the proof, we needed to use the following Lemma.

Lemma 2.5. If P ∈ Sylp(G) and Q is any p-subgroup, then Q ∩NG(P ) = Q ∩ P .

Proof. Since P ≤ NG(P ), it is clear that Q ∩ P ≤ Q ∩NG(P ), so we just need to show the reverse
inclusion.

Let H = NG(P )∩Q. Since H ≤ Q by definition, we just need to show H ≤ P . We will show this
by proving that PH is a p-subgroup of G. Then, P ≤ PH by definition, by P was a p-subgroup of
largest possible order, so P = PH. And, H ≤ PH by definition, so H ≤ P , as desired.

Now we show that PH is a p-subgroup. Because H ≤ NG(P ), PH is a subgroup. We also
know its order: |PH| = |P ||H|/|P ∩ H|, and all of these numbers are powers of p, so |PH| is a
p-group. □
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