
OCTOBER 12 NOTES

1. 4.2: Groups acting on themselves by left multiplication, Cayley’s Theorem

In this section, we will consider a special case of group actions: when a group G acts on itself.
The most natural action we have is G acts on G by left multiplication: for g ∈ G and a ∈ G,
g · a = ga.

We can actually generalize all of this to a group acting on a set of cosets, instead of just a group
acting on itself. If H is a subgroup of G, then G acts by left multiplication on the set of left cosets
of H by g · aH = gaH.

We can then use group actions to prove strong statements about the structure of groups.

Corollary 1.1. If G is a finite group of order n and p is the smallest prime dividing |G|, then any
subgroup of index p is normal. For example, if |G| is even, any subgroup of index 2 is normal.

Proof. Suppose H ≤ G and [G : H] = p. Let πH : G → SA be the permutation representation
of the left multiplication action of G on the set A of cosets of H. Because H has p cosets, A has
p elements, so SA = Sp. Let K = kerπH . We claim that K ≤ H: if k ∈ K, then k(aH) = aH
for any aH ∈ A, because multiplication by k acts as the identity permutation. But, this implies
kaa−1 ∈ H, so k ∈ H. So, K ≤ H. Let q = [H : K]. Then, [G : K] = [G : H][H : K] = pq. Because
G/K ∼= πH(G) is isomorphic to a subgroup of Sp, pq = |G/K| must divide |Sp| = p!. Therefore,
q | p!/p = (p − 1)!. However, we assumed that p was the smallest prime dividing the order of G,
and q also divides |G|, so all of the prime factors of q must be greater than p. Bcause q | (p − 1)!
all of whose prime factors are less than p, we must have q = 1. Therefore, [H : K] = 1 so H = K,
so H = kerπH and H is normal. □

Example 1.2. Because [Sn : An] = 2, An is a normal subgroup of Sn.

2. 4.3: Groups acting on themselves by conjugation and the class equation

In this section, we consider a different action of G on itself: G acts on G by g · a = gag−1. We
leave it as an exercise to verify that this is an action.

Definition 2.1. This action is called conjugation. If a, b ∈ G, such that b = gag−1 for some
g ∈ G, we say a and b are conjugate. The conjugacy classes of G are the orbits of this action,
i.e. the sets of all conjugate elements.

Example 2.2. If G is abelian, then for any g, a ∈ G, gag−1 = a, so this is the trivial action.
The associated permutation representation is the trivial function ϕ : G → SG. Because this is not
injective for non-trivial G, this action is not faithful.

For any non-trivial groupG, this action is not transitive becauseO1 = {b ∈ G | b = g1g−1 = 1} = {1}.
So, O1 ̸= G.

For any group G and a ∈ G, Oa = {a} if and only if gag−1 = a for all g ∈ G, if and only if
a ∈ Z(G).

Definition 2.3. Two subsets S and T of G are conjugate if there exists some g ∈ G such that
T = gSg−1 = {gsg−1 | s ∈ S}.

We can explicitly describe when two subsets are conjugate: by definition, the stabilizer of any
subset S is GS = {g ∈ G | gSg−1 = S} = NG(S) is the normalizer of S, and if S = {a} is just
one element, then Ga = CG(a) is the centralizer of a. By the orbit-stabilizer theorem, we know the
number of different orbits of an element or subset is equal to the index of its stabilizer. Therefore:
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Proposition 2.4. The number of conjugates of a subset S in G is [G : NG(S)] and the number of
conjugates of an element a ∈ G is [G : CG(a)].

This allows us to prove another very important result, the class equation.

Theorem 2.5. Let G be a finite group and g1, . . . , gn be representatives of distinct conjugacy classes
of G not contained in the center of G. Then,

|G| = |Z(G)|+
n∑

i=1

[G : CG(gi)].

Proof. Because the conjugacy classes are orbits of the group action, they partition G, i.e.

|G| =
r∑

j=1

Oaj

where aj are representatives of the different orbits. By above, we know |Oaj | = 1 if and only if
aj ∈ Z(G), and for aj /∈ Z(G), |Oaj | = [G : CG(aj)]. So,

|G| =
∑

aj∈Z(G)

1 +
∑

aj /∈Z(G)

[G : CG(aj)]

and renaming the aj /∈ Z(G) as gi, we see

|G| = |Z(G)|+
n∑

i=1

[G : CG(gi)].

□

Note that every summand on the right side is a divisor of |G|, and by definition the elements
[G : CG(gi)] must be less than |G|. This will be very important.

Example 2.6. In G = S3, the conjugacy classes are: {1} (this is the only element in the center of
G), {(12), (13), (23)} (we can write (13) = (132)(12)(132)−1, for example) and {(123), (132)}.

The class equation then says:

6 = 1 + 2 + 3.

Your book goes in depth studying the conjugagcy classes in Sn. Because we are short on time,
we just state the relevant result here:

Proposition 2.7. Two elements in Sn are conjugate if and only if they have the same cycle type.

How do we use the class equation? Here are some examples.

Theorem 2.8. If p is a prime number and G is a group with |G| = pn for some n ≥ 1, then
|Z(G)| > 1.

Proof. By the class equation, we know

|G| = |Z(G)|+
∑

[G : CG(gi)]

but the numbers on the right side must all divide |G| = pn. Also, [G : CG(gi)] > 1 be definition,
so p | [G : CG(gi)] for each i. As p | |G|, this implies p | |Z(G)|. Because |Z(G)| ≥ 1, this implies
|Z(G)| ≥ p and hence Z(G) is non-trivial. □

Corollary 2.9. If |G| = p2 for some prime p, then G ∼= Zp2 or G ∼= Zp × Zp. In particular, G is
abelian.
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Proof. Since Z(G) ̸= {1} by the previous theorem, then G/Z(G) has order 1 or p, so it must be
cyclic. By a homework problem, this implies that G is abelian. If G has an element of order p2,
then G ∼= Zp2 because it is cyclic. Now suppose every element has order < p2, so every non-identity
element has order p. Choose x ∈ G and y ∈ G− ⟨x⟩ both of order p. Then, ⟨x, y⟩ is strictly larger
than ⟨x⟩, but |⟨x⟩| = p so we must have G = ⟨x, y⟩ = {xayb | a, b ∈ Zp} because G is abelian.

Consider the homomorphism ϕ : Zp × Zp → G given by (a, b) 7→ xayb. One can check that this is
the desired isomorphism. □

We can also use the class equation to prove the simplicity of A5.

Proposition 2.10. If H ≤ G is a normal subgroup, then H is a union of conjugacy classes of G.

Proof. We must show that if x ∈ H, then for any y ∈ Ox, y ∈ H. Suppose then that x ∈ H. Then,
y = gxg−1 ∈ Ox ∈ gHg−1 by definition, but H is normal, so therefore y ∈ H. □

Theorem 2.11. For n ≥ 5, An is simple.

Proof. We provide an outline of the proof, with some details left to check.
Step 1: For n ≥ 5, An is generated by 3-cycles, i.e. An = ⟨(aiajak) | i ̸= j ̸= k ∈ {1, . . . , n}⟩.

Try this as an exercise!
Step 2: All 3-cycles are conjugate in An for n ≥ 5. Try this! You could do this by computing

sizes of centralizers or directly: given (123) and (aiajak), find something that conjugates one to
another.

Step 3: Let N be a non-trivial normal subgroup of An. Show that N contains a 3-cycle. This
is the most computationally challenging part, and one way to do it is to: prove it for A5 using the
class equation (e.g. if N did not contain a 3 cycle, it would be a union of other conjugacy classes,
but these cannot add up to a divisor of 60), and then use induction on n to prove it in general.

Then, because N contains a 3-cycle and it is normal, by Step 2, it must contain all 3-cycles, and
by Step 1, it must be all of An, so An has no nontrivial normal subgroups. □

You may take a look at Section 4.6 for an alternative approach.
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