OCTOBER 12 NOTES

1. 4.2: Groups acting on themselves by left multiplication, Cayley's Theorem

In this section, we will consider a special case of group actions: when a group G acts on itself. The most natural action we have is G acts on G by left multiplication: for $g \in G$ and $a \in G$, $g \cdot a=g a$.

We can actually generalize all of this to a group acting on a set of cosets, instead of just a group acting on itself. If H is a subgroup of G, then G acts by left multiplication on the set of left cosets of H by $g \cdot a H=g a H$.

We can then use group actions to prove strong statements about the structure of groups.
Corollary 1.1. If G is a finite group of order n and p is the smallest prime dividing $|G|$, then any subgroup of index p is normal. For example, if $|G|$ is even, any subgroup of index 2 is normal.
Proof. Suppose $H \leq G$ and $[G: H]=p$. Let $\pi_{H}: G \rightarrow S_{A}$ be the permutation representation of the left multiplication action of G on the set A of cosets of H. Because H has p cosets, A has p elements, so $S_{A}=S_{p}$. Let $K=\operatorname{ker} \pi_{H}$. We claim that $K \leq H:$ if $k \in K$, then $k(a H)=a H$ for any $a H \in A$, because multiplication by k acts as the identity permutation. But, this implies $k a a^{-1} \in H$, so $k \in H$. So, $K \leq H$. Let $q=[H: K]$. Then, $[G: K]=[G: H][H: K]=p q$. Because $G / K \cong \pi_{H}(G)$ is isomorphic to a subgroup of $S_{p}, p q=|G / K|$ must divide $\left|S_{p}\right|=p!$. Therefore, $q \mid p!/ p=(p-1)!$. However, we assumed that p was the smallest prime dividing the order of G, and q also divides $|G|$, so all of the prime factors of q must be greater than p. Bcause $q \mid(p-1)$! all of whose prime factors are less than p, we must have $q=1$. Therefore, $[H: K]=1$ so $H=K$, so $H=\operatorname{ker} \pi_{H}$ and H is normal.
Example 1.2. Because $\left[S_{n}: A_{n}\right]=2, A_{n}$ is a normal subgroup of S_{n}.

2. 4.3: Groups acting on themselves by conjugation and the class equation

In this section, we consider a different action of G on itself: G acts on G by $g \cdot a=g a g^{-1}$. We leave it as an exercise to verify that this is an action.
Definition 2.1. This action is called conjugation. If $a, b \in G$, such that $b=g a g^{-1}$ for some $g \in G$, we say a and b are conjugate. The conjugacy classes of G are the orbits of this action, i.e. the sets of all conjugate elements.

Example 2.2. If G is abelian, then for any $g, a \in G, g a g^{-1}=a$, so this is the trivial action. The associated permutation representation is the trivial function $\phi: G \rightarrow S_{G}$. Because this is not injective for non-trivial G, this action is not faithful.

For any non-trivial group G, this action is not transitive because $\mathcal{O}_{1}=\left\{b \in G \mid b=g 1 g^{-1}=1\right\}=\{1\}$. So, $\mathcal{O}_{1} \neq G$.

For any group G and $a \in G, \mathcal{O}_{a}=\{a\}$ if and only if $g a g^{-1}=a$ for all $g \in G$, if and only if $a \in Z(G)$.

Definition 2.3. Two subsets S and T of G are conjugate if there exists some $g \in G$ such that $T=g S g^{-1}=\left\{g s g^{-1} \mid s \in S\right\}$.

We can explicitly describe when two subsets are conjugate: by definition, the stabilizer of any subset S is $G_{S}=\left\{g \in G \mid g S g^{-1}=S\right\}=N_{G}(S)$ is the normalizer of S, and if $S=\{a\}$ is just one element, then $G_{a}=C_{G}(a)$ is the centralizer of a. By the orbit-stabilizer theorem, we know the number of different orbits of an element or subset is equal to the index of its stabilizer. Therefore:

Proposition 2.4. The number of conjugates of a subset S in G is $\left[G: N_{G}(S)\right]$ and the number of conjugates of an element $a \in G$ is $\left[G: C_{G}(a)\right]$.

This allows us to prove another very important result, the class equation.
Theorem 2.5. Let G be a finite group and g_{1}, \ldots, g_{n} be representatives of distinct conjugacy classes of G not contained in the center of G. Then,

$$
|G|=|Z(G)|+\sum_{i=1}^{n}\left[G: C_{G}\left(g_{i}\right)\right] .
$$

Proof. Because the conjugacy classes are orbits of the group action, they partition G, i.e.

$$
|G|=\sum_{j=1}^{r} \mathcal{O}_{a_{j}}
$$

where a_{j} are representatives of the different orbits. By above, we know $\left|\mathcal{O}_{a_{j}}\right|=1$ if and only if $a_{j} \in Z(G)$, and for $a_{j} \notin Z(G),\left|\mathcal{O}_{a_{j}}\right|=\left[G: C_{G}\left(a_{j}\right)\right]$. So,

$$
|G|=\sum_{\left.a_{j} \in Z_{(} G\right)} 1+\sum_{a_{j} \notin Z(G)}\left[G: C_{G}\left(a_{j}\right)\right]
$$

and renaming the $a_{j} \notin Z(G)$ as g_{i}, we see

$$
|G|=|Z(G)|+\sum_{i=1}^{n}\left[G: C_{G}\left(g_{i}\right)\right] .
$$

Note that every summand on the right side is a divisor of $|G|$, and by definition the elements $\left[G: C_{G}\left(g_{i}\right)\right]$ must be less than $|G|$. This will be very important.

Example 2.6. In $G=S_{3}$, the conjugacy classes are: $\{1\}$ (this is the only element in the center of $G),\{(12),(13),(23)\}$ (we can write $(13)=(132)(12)(132)^{-1}$, for example) and $\{(123),(132)\}$.

The class equation then says:

$$
6=1+2+3 .
$$

Your book goes in depth studying the conjugagcy classes in S_{n}. Because we are short on time, we just state the relevant result here:
Proposition 2.7. Two elements in S_{n} are conjugate if and only if they have the same cycle type.
How do we use the class equation? Here are some examples.
Theorem 2.8. If p is a prime number and G is a group with $|G|=p^{n}$ for some $n \geq 1$, then $|Z(G)|>1$.

Proof. By the class equation, we know

$$
|G|=|Z(G)|+\sum\left[G: C_{G}\left(g_{i}\right)\right]
$$

but the numbers on the right side must all divide $|G|=p^{n}$. Also, $\left[G: C_{G}\left(g_{i}\right)\right]>1$ be definition, so $p \mid\left[G: C_{G}\left(g_{i}\right)\right]$ for each i. As $p||G|$, this implies $p||Z(G)|$. Because $|Z(G)| \geq 1$, this implies $|Z(G)| \geq p$ and hence $Z(G)$ is non-trivial.
Corollary 2.9. If $|G|=p^{2}$ for some prime p, then $G \cong \mathbb{Z}_{p^{2}}$ or $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. In particular, G is abelian.

Proof. Since $Z(G) \neq\{1\}$ by the previous theorem, then $G / Z(G)$ has order 1 or p, so it must be cyclic. By a homework problem, this implies that G is abelian. If G has an element of order p^{2}, then $G \cong \mathbb{Z}_{p^{2}}$ because it is cyclic. Now suppose every element has order $<p^{2}$, so every non-identity element has order p. Choose $x \in G$ and $y \in G-\langle x\rangle$ both of order p. Then, $\langle x, y\rangle$ is strictly larger than $\langle x\rangle$, but $|\langle x\rangle|=p$ so we must have $G=\langle x, y\rangle=\left\{x^{a} y^{b} \mid a, b \in \mathbb{Z}_{p}\right\}$ because G is abelian. Consider the homomorphism $\phi: \mathbb{Z}_{p} \times \mathbb{Z}_{p} \rightarrow G$ given by $(a, b) \mapsto x^{a} y^{b}$. One can check that this is the desired isomorphism.

We can also use the class equation to prove the simplicity of A_{5}.
Proposition 2.10. If $H \leq G$ is a normal subgroup, then H is a union of conjugacy classes of G.
Proof. We must show that if $x \in H$, then for any $y \in \mathcal{O}_{x}, y \in H$. Suppose then that $x \in H$. Then, $y=g x g^{-1} \in \mathcal{O}_{x} \in g H g^{-1}$ by definition, but H is normal, so therefore $y \in H$.

Theorem 2.11. For $n \geq 5, A_{n}$ is simple.
Proof. We provide an outline of the proof, with some details left to check.
Step 1: For $n \geq 5, A_{n}$ is generated by 3 -cycles, i.e. $A_{n}=\left\langle\left(a_{i} a_{j} a_{k}\right) \mid i \neq j \neq k \in\{1, \ldots, n\}\right\rangle$. Try this as an exercise!

Step 2: All 3-cycles are conjugate in A_{n} for $n \geq 5$. Try this! You could do this by computing sizes of centralizers or directly: given (123) and $\left(a_{i} a_{j} a_{k}\right)$, find something that conjugates one to another.

Step 3: Let N be a non-trivial normal subgroup of A_{n}. Show that N contains a 3 -cycle. This is the most computationally challenging part, and one way to do it is to: prove it for A_{5} using the class equation (e.g. if N did not contain a 3 cycle, it would be a union of other conjugacy classes, but these cannot add up to a divisor of 60), and then use induction on n to prove it in general.

Then, because N contains a 3 -cycle and it is normal, by Step 2 , it must contain all 3 -cycles, and by Step 1 , it must be all of A_{n}, so A_{n} has no nontrivial normal subgroups.

You may take a look at Section 4.6 for an alternative approach.

