
OCTOBER 5 NOTES

1. 3.5: Transpositions and the generation of Sn

Here, we list some facts about Sn that we will prove in the future. (This is a bit out of place;
but we will list the relevant definitions/facts anyway.)

Definition 1.1. In Sn, a cycle of length 2 (one of the form (ab)) is called a transposition.

Proposition 1.2. Every permutation can be written as a product of transpositions.

Proof. We prove this for single cycles, as you can write any permutation as a product of disjoint
cycles. If σ = (a1a2 . . . am), then

σ = (a1a2 . . . am) = (a1am)(a1am−1) . . . (a1a3)(a1a2)

is a product of transpositions. □

Definition 1.3. If σ ∈ Sn can be written as a product of an even number of transpositions, then
σ is called an even permutation. If it can be written as an odd number of transpositions, then σ
is an odd permutation.

The sign of a permutation is

ϵ(σ) =

{
1 σ is even

−1 σ is odd

One has to check that this is well-defined ; i.e. that no permutation can be written as both an
even and odd number of transpositions. Your book does this rigorously. Once that is done, we
define the alternating group:

Definition 1.4. The alternating group An is the collection of all even permutations in Sn.
Equivalently, if ϵ : Sn → {±1} is the homomorphism sending a permutation to its sign, An = ker ϵ.

Because An is the kernel of a homomorphism, it is a normal subgroup of Sn, and by the First
Isomorphism Theorem, it has size |An| = n!/2.

2. 4.1: Group Actions and Permutation Representations

Finally, we recap some terminology about group actions.

Definition 2.1. If G acts on a nonempty set A, then the map σg : A → A given by σg : a 7→ g · a
is a permutation of A, and this induces a homomorphism ϕ : G → SA defined by ϕ(g) = σg called
the permutation representation.

Definition 2.2. (1) The kernel of an action of G on a set A is

{g ∈ G | g · a = a for all a ∈ A}
(equivalently, the kernel of the permutation representation ϕ). An action is faithful if its
kernel is the identity.

(2) For any a ∈ A, the stabilizer of a is the set

Ga = {g ∈ G | g · a = a}.
Note that by definition, for any a ∈ A, the kernel of the group action is contained in Ga.
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We could ‘reverse’ these ideas: suppose G is a group and A is any set such that there exists a
homomorphism ϕ : G → SA. Then, we may define an action of G on A by g · a = ϕ(g)(a). This is
the content of the following:

Proposition 2.3. For any group G and nonempty set A, there is a bijection between actions of G
on A and homomorphisms G → SA.

We then rephrase our definition of permutation representation as follows:

Definition 2.4. A permutation representation of G is any homomorphism G to the symmetric
group SA for some nonempty set A.

Finally, two more definitions on group actions arising from the following fact:

Proposition 2.5. If G acts on a set A, then the relation defined by a ∼ b if a = g · b for some
g ∈ G is an equivalence relation.

Proof. We check the properties: because a = 1 · a by definition of action, then a ∼ a. If a ∼ b,
then a = g · b, so g−1 · a = b, so b ∼ a. Finally, if a ∼ b and b ∼ c, then a = g1 · b and b = g2 · c so
a = (g1g2) · c so a ∼ c. Thus, this is an equivalence relation. □

Definition 2.6. If G is a group acting on a set A and a ∈ A, then the equivalence class of a,
{g · a | g ∈ G}, is called the orbit of a. The action is transitive if the orbit of a is all of A.

Proposition 2.7. For any a ∈ A, the size of the orbit of a is [G : Ga].

Proof. Let Oa denote the orbit of a. Suppose b ∈ Oa, i.e. b = g · a for some g ∈ G. Then, define a
map Oa → { cosets of Ga} by b = g · a 7→ gGa. This is surjective, since for any g ∈ G, g · a is by
definition an element of Oa. It is also injective: g · a = h · a if and only if hg−1 ∈ Ga if and only if
gGa = hGa. Therefore, it is a bijection, so |Oa| = [G : Ga]. □

For finite groups, this is usually referred to as the Orbit-Stabilizer Theorem, because by
Lagrange’s Theorem, it says |G| = |Oa||Ga|, the size of the orbit times the size of the stabilizer.

3. 4.2: Groups acting on themselves by left multiplication, Cayley’s Theorem

In this section, we will consider a special case of group actions: when a group G acts on itself.
The most natural action we have is G acts on G by left multiplication: for g ∈ G and a ∈ G,
g · a = ga. What we will prove in this section is that (1) this action is transitive and faithful and
(2) the associated permutation representation gives an injective map to SG.

Let us see this in an example. Suppose G = ⟨x | x3 = 1⟩ = {1, x, x2}. What happens when we
act by G on itself? For each g ∈ G, we move the elements of G around using the action. If g = 1,
then we can compute g · a for all a ∈ G:

1 · 1 = 11 = 1 1 · x = 1x = x 1 · x2 = 1x2 = x2.

If g = x, we can do the same thing:

x · 1 = x1 = x x · x = xx = x2 x · x2 = xx2 = 1.

Finally, for g = x2, we get:

x2 · 1 = x21 = x2 x2 · x = x2x = 1 x2 · x2 = x2x2 = x.

What we see is that this action is transitive, because every element can move to every other
element of the group, and it is faithful, because each group element acts in a different way.

What we are interested in now is the map to SG. G has 3 elements, so this is just S3. How
do we get the map? We consider the induced permutation from each element of g: recall that the
permutation representation is the map ϕ : G → SG given by ϕ(g) = σg, where σg is the permutation
of SG given by σg(a) = g · a.
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We can explicitly determine each permutation σg: if g = 1, then σ1(a) = a for all a ∈ G, so
σ1 is the identity permutation. If g = x, then we see that σx moves 1 to x, x to x2, and x2

to 1 so ‘cyclically rotates’ the elements of G. Labeling the elements as 1, 2, 3, this would be the
permutation (123). Similarly, if g = x2, then σx2 moves 1 to x2, x to 1, and x2 to x, so rotates the
elements in the other direction. With the same labeling, this would be the permutation (132).

In summary, we have worked out the permutation representation: it is the map G → S3 sending
1 to 1, x to (123), and x2 to (132).

Let us prove some general facts about this example.

Proposition 3.1. The left multiplication action of G on itself is transitive, i.e. for any a ∈ G,
Oa = {b ∈ G | b = g · a for some g ∈ G} = G.

Proof. Let a ∈ G. Let b ∈ G be any element. We need to show that b ∈ Oa. But, because a, b ∈ G,
g = ba−1 ∈ G, and g · a = ga = ba−1a = b, so b ∈ Oa and we are done. □

Proposition 3.2. The left multiplication action of G on itself is faithful, i.e. for any g1 ̸= g2 ∈ G,
σg1 ̸= σg2.

Proof. We prove the contrapositive. Assume that σg1 = σg2 . Then, for a ∈ G, σg1(a) = σg2(a), so
g1a = g2a. By the cancellation law, this implies that g1 = g2. □

Now we can finally prove Cayley’s Theorem. Recall a homework problem: if ϕ : G → H is an
injective homomorphism, then G ∼= ϕ(G) and ϕ(G) is a subgroup of H.

Theorem 3.3 (Cayley’s Theorem). Every group G is isomorphic to a subgroup of a symmetric
group. If |G| = n, then G is isomorphic to a subgroup of Sn.

Proof. Consider the left multiplication action of G on itself. We have already shown that the
permutation representation ϕ : G → SG is a homomorphism, and by the previous proposition, ϕ is
injective, so G ∼= ϕ(G) and ϕ(G) is a subgroup of SG. □

We can actually generalize all of this to a group acting on a set of cosets, instead of just a group
acting on itself. If H is a subgroup of G, then G acts by left multiplication on the set of left cosets
of H by g · aH = gaH. In this case, generalizations of the previous propositions still hold; for
example, the following is a theorem in Dummit and Foote.

Theorem 3.4. Let G be a group and H a subgroup. Let G act by left multiplication on the set A
of cosets of H in G with permutation representation πH . Then:

(1) G acts transitively on A
(2) the stabilizer of the coset 1H ∈ A is H
(3) the kernel of the action (kernel of πH) is the largest normal subgroup of G contained in H.

Let us use the action to prove a theorem on normal subgroups!

Corollary 3.5. If G is a finite group of order n and p is the smallest prime dividing |G|, then any
subgroup of index p is normal. For example, if |G| is even, any subgroup of index 2 is normal.
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