
SEPTEMBER 28 NOTES

1. 3.1: Quotient groups and homomorphisms

Last time, we introduced quotient groups as the group of all fibers of a homomorphism. Before
my computer gave up, we were in-progress of relating that definition to cosets, which we will
continue today.

Definition 1.1. Let H ≤ G be any subgroup and g ∈ G. The left coset of H with respect to g is

gH = {gh | h ∈ H}.
The right coset is

Hg = {hg | h ∈ H}.

With this definition, we showed last time that:

Theorem 1.2. Let G be a group and let K be the kernel of some homomorphism from G to
another group, ϕ : G → H. Then, the fibers X = ϕ−1(a) are equal to cosets of K: precisely, for
any u ∈ X, X = uK. And, the set of left cosets of K forms a group G/K with binary operation
uKvK = (uv)K.

And ended with:

Proposition 1.3. Let H be any subgroup of G. The set of left cosets form a partition of G,
meaning for every g ∈ G, g appears in some coset of H, and for two different elements u, v ∈ G,
either uH = vH or uH ∩ vH = ∅. Furthermore, uH = vH if and only if v−1u ∈ H.

Now, we want to talk about quotients by general subgroups (not necessarily kernels).

Definition 1.4. A subgroup N of G is normal if and only if it satisfies any of the following
equivalent conditions:

(1) For all g ∈ G,n ∈ N , gng−1 ∈ N .
(2) For all g ∈ G, gNg−1 = N .
(3) For all g ∈ G, gN = Ng.
(4) NG(N) = G

If N is normal in G, we denote this by N �G.

Some terminology: for n ∈ N , g ∈ G, the element gng−1 is called the conjugate of n by g. We
say g normalizes N if gNg−1 = N .

Proposition 1.5. Let G be a group and let N be a subgroup of G. Then:

(1) N is normal if and only if the operation uNvN = (uv)N is well-defined.
(2) If the operation is well-defined, then the set of cosets of N forms a group called G/N .

Proof. We prove (1) and leave (2) as an exercise. The key points for (2) are that 1N is the identity
in G/H and (uN)−1 = u−1N .

To prove (1), assume first that N is normal, i.e. gng−1 ∈ N for all g ∈ G,n ∈ N . To show the
operation is well defined, we need to show that if u, u1 ∈ uN and v, v1 ∈ vN , then uvN = u1v1N .
Because u1 ∈ uN , write u1 = un and similarly v1 = vm for some n,m ∈ N . To see that u1v1 ∈ uvN ,
we write:

u1v1 = (un)(vm) = u(vv−1)n(vm) = uv(v−1nv)m.
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Because N is normal, v−1nv = n1 ∈ N , so we have

u1v1 = (un)(vm) = u(vv−1)n(vm) = uv(v−1nv)m = uvn1m = (uv)n1m ∈ uvN.

Therefore, we have shown that u1v1 ∈ uvN , so uvN ∩ u1v1N ̸= ∅, so we have uvN = u1v1N as
desired.

For the converse, assume that the operation is well-defined as above. Let g ∈ G and n ∈ N . If
u = 1, u1 = n, v = v1 = g−1, then we see that 1g−1N = ng−1N , so g−1N = ng−1N . Therefore,
ng−1 ∈ g−1N so ng−1 = g−1n1 for some n1 ∈ N , so gng−1 ∈ N , as desired. □

This says exactly that we can define the quotient group G/N for any normal subgroup of G.
It turns out that this is not actually different than the first definition, and normal subgroups are
precisely the subgroups that arise as kernels of homomorphisms.

Proposition 1.6. A subgroup N of a group G is normal if and only if it is the kernel of some
homomorphism.

Proof. If N = kerϕ for a homomorphism ϕ, we leave it as an exercise to show that N is normal.
Now, suppose N is normal. Then, let H = G/N and consider π : G → H defined by π(g) = gN .

This is called the projection homomorphism. It is indeed a homomorphism by definition of the
binary operation in G/N :

π(g1g2) = (g1g2)N = g1Ng2N = π(g1)π(g2).

To compute the kernel, we use the definition:

kerπ = {g ∈ G | π(g) = 1N} = {g ∈ G | gN = 1N} = {g ∈ G | g ∈ N} = N.

Therefore, N arises as the kernel of a homomorphism. □

There are many other interesting quotient groups!

Example 1.7. Let G = R2 with H = R and ϕ : G → H given by ϕ(a, b) = a. The kernel of this
map is just K = {(0, b) | b ∈ R}, and the fibers of the map are just ϕ−1(a) = {(a, b) | b ∈ R}.
Schematically, the fibers are just the points in the xy-plane on the line x = a. The quotient group
G/K is then just the set of fibers, which is just the set of vertical lines in the plane, with binary
operation given by adding the lines x = a and x = a1 to get the line x = (a+ a1).

2. 3.2: More on cosets and Lagrange’s Theorem

Now, we move to discussing cosets in general (not just in the normal case).
Note that if G is abelian, then every subgroup is normal, but typically most subgroups are not

normal. For example, an exercise: show that ⟨(12)⟩ is not a normal subgroup of S3 (or Sn for any
n ≥ 3).

We start with an essential theorem:

Theorem 2.1. If G is a finite group and H is a subgroup of G, then |H| divides |G|.

Proof. Let |H| = n and let the number of left cosets in H equal k. We have a bijection between
H and gH given by h 7→ gh (injective by the cancellation law, and surjective by definition of gH).
Since the left cosets partition G and they all have the same size, we have |G| = nk, so |H| = n
divides |G|. □

Definition 2.2. The number of left cosets of H is called the index of H in G, denoted [G : H].

Lagrange’s theorem has many important corollaries!

Corollary 2.3. If G is a finite group, then for any x ∈ G, ord(x) divides |G|. In other words,

x|G| = 1 for all x ∈ G.
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Proof. Because ord(x) = |H| where H = ⟨x⟩, this follows directly from Lagrange’s theorem.
The second sentence follows because, if ord(x) divides |G|, then |G| = ord(x)k for some k, so

x|G| = (xord(x))k = 1. □

Proposition 2.4. If |G| = p is a prime number, then G is cyclic and hence G ∼= Zp.

Proof. Let x ∈ G, x ̸= 1. Let H = ⟨x⟩. By Lagrange’s theorem, |H| divides |G| = p but |H| > 1
by construction so we must have |H| = p and hence H = G. Therefore, G = ⟨x⟩. □

In the coming chapters, we will prove several related results to Lagrange’s theorem. For now, we
conclude this section with some other useful corollaries of Lagrange’s theorem.

Definition 2.5. Let H and K be subgroups of G and let HK = {hk | h ∈ H, k ∈ K}.

Proposition 2.6. If H and K are finite subgroups of a group G, then

|HK| = |H||K|
|H ∩K|

.

Proof. To try to apply Lagrange’s theorem, we count cosets! Note that HK = ∪h∈HhK is a union
of cosets of K, and each coset of K has |K| elements. So, we just need to know how many distinct
cosets there are. By what we already proved, h1K = h2K is and only if h−1

2 h1 ∈ K, so h1K = h2K

if and only if h−1
2 h1 ∈ H ∩K, if and only if h1(H ∩K) = h2(H ∩K). Therefore, the number of

cosets of K of the form hK is the number of cosets h(H ∩K), which is |H|/|H ∩K| by Lagrange’s

Theorem. So, HK is the union of |H|/|H ∩K| cosets of size |K|, so we have |HK| = |H||K|
|H∩K| . □

Note that we did not need HK to be a subgroup to prove the previous proposition. It is typically
not!

Proposition 2.7. For H and K subgroups of a group G, HK is a subgroup of G if and only if
HK = KH.

Proof. Assume HK = KH. Let a, b ∈ HK. We must show that ab−1 ∈ HK. Write a = h1k1 and
b = h2k2 so b−1 = k−1

2 h−1
2 , so ab−1 = h1k1k

−1
2 h−1

2 = h1k3h3 by writing k3 = k1k
−1
2 and h3 = h−1

2 .
Since HK = KH, then k3h3 = h4k4 for some h4, k4 ∈ H,K, so ab−1 = h1h4k4 ∈ HK, as desired.

Now, suppose HK is a subgroup. Then K ≤ HK and H ≤ HK (because 1 ∈ H and 1 ∈ K), so
KH ≤ HK (because HK must be closed under the binary operation). Now, let hk ∈ HK be any
element. Because HK is closed under inverses, (hk)−1 = k−1h−1 = h1k1 for some h1, k1 ∈ H,K,
so hk = k−1

1 h−1
1 ∈ KH, so HK ⊂ KH and hence HK = KH. □

Corollary 2.8. If H and K are subgroups such that H ≤ NG(K), then HK is a subgroup of G.
In particular, if K �G, then NG(K) = G so HK ≤ G for any H ≤ G.

Proof. If H ≤ NG(K), then for h ∈ H, k ∈ K, hkh−1 ∈ K so hk = (hkh−1)h ∈ KH. Therefore,
HK ⊂ KH. Similarly, KH ⊂ HK so HK = KH and the statement follows from the previous
proposition. □
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