SEPTEMBER 26 NOTES

1. 2.5: The lattice of subgroups of a group

We conclude Chapter 2 with a way of visualizing all subgroups of a given group. This will become very important when we talk about Galois theory in Math 612!
Construction. Let G be a group. For each subgroup of G, plot the subgroups of G vertically, starting with $\{1\}$ at the bottom and G at the top, putting subgroups on the same line if they have the same number of elements. Connect two subgroups $H \leq G$ and $K \leq G$ with a line if $H<K$ and there does not exist a subgroup K^{\prime} with $H<K^{\prime}<K$.

Example 1.1. For $G=\mathbb{Z}_{6}$, we listed all of the subgroups already: The subgroups of \mathbb{Z}_{6} are:

- $($ order 6$)\langle 1\rangle=\langle 5\rangle=\{0,1,2,3,4,5\}$
- (order 3) $\langle 2\rangle=\langle 4\rangle=\{0,2,4\}$
- (order 2) $\langle 3\rangle=\{0,2\}$
- (order 1) $\langle 0\rangle=\{0\}$

The subgroup lattice is:

$\langle 0\rangle$

Example 1.2. For $G=D_{8}$, we can list all of the subgroups. (We leave this as an exercise to verify this list is complete. Key input: if a subgroup contains r^{i} and $s r^{j}$ for $i=1,3$ and $j=0,1,2,3$, it must be the whole group.)

- (order 8) $\langle r, s\rangle=\left\{1, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}$
- (order 4) $\left\langle s, r^{2}\right\rangle=\left\langle s r^{2}, r^{2}\right\rangle=\left\{1, s, r^{2}, s r^{2}\right\}$, and $\langle r\rangle=\left\langle r^{3}\right\rangle=\left\{1, r, r^{2}, r^{3}\right\}$, and $\left\langle s r, r^{2}\right\rangle=\left\langle s r^{3}, r^{2}\right\rangle=\left\{1, s r, r^{2}, s r^{3}\right\}$,
- (order 2) $\langle s\rangle=\{1, s\}$, and $\left\langle s r^{2}\right\rangle=\left\{1, s r^{2}\right\},\left\langle r^{2}\right\rangle=\left\{1, r^{2}\right\}$, and $\langle s r\rangle=\{1, s r\}$, and $\left\langle s r^{3}\right\rangle=\left\{1, s r^{3}\right\}$,
- $($ order 1$)\langle 1\rangle=\{1\}$

The subgroup lattice is:

2. 3.1: Quotient groups and homomorphisms

Let $\phi: G \rightarrow H$ be a homomorphism. For any $a \in H$, the fiber over a, X_{a}, is the preimage of a :

$$
X_{a}:=\phi^{-1}(a)=\{g \in G \mid \phi(g)=a\} .
$$

We can visualize this schematically as the fibers of G being the 'vertical' sets that get contracted to the point $a \in H$ (see Dummit and Foote). Using the binary operation in H, we can define a group structure on the set of nonempty fibers by saying $X_{a} \star X_{b}=X_{a b}$, where $a b \in H$ is the product of a and b. This construction is one definition of quotient group.

The prototypical example is the map $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ given by $\phi(x)=x \bmod n$. The fiber X_{a} is the set of all $z \mathbb{Z}$ such that $z=a \bmod n$, i.e. all elements with remainder a. It makes sense to say $X_{a}+X_{b}=X_{a+b}$ because, for $z \in X_{a}$ and $w \in X_{b}, z=a \bmod n$ and $w=b \bmod n$, so $z+w=a+b$ $\bmod n$.

Before we formally define quotient groups, some reminders:
Let $\phi: G \rightarrow H$ be a homomorphism. Then:
(1) $\phi\left(1_{G}\right)=1_{H}$
(2) $\phi\left(g^{-1}\right)=\phi(g)^{-1}$
(3) for any $n \in \mathbb{Z}, \phi\left(g^{n}\right)=\phi(g)^{n}$
(4) the kernel of ϕ is the set $\operatorname{ker} \phi=\left\{g \in G \mid \phi(g)=1_{H}\right\}=X_{1_{H}}$. It is a subgroup of G.
(5) the image of ϕ is the set $\operatorname{im} \phi=\{\phi(g) \mid g \in G\}$. It is a subgroup of H.

Definition 2.1. Let $\phi: G \rightarrow H$ be a homomorphism with kernel K. The quotient group G / K (' $G \bmod K$ ') is the group

$$
G / K=\left\{X_{a} \mid a \in H\right\}
$$

with $X_{a} \star X_{b}:=X_{a b}$.
This may be quite different than the definition you've seen before. To relate them, we introduce more notation and observations.
Proposition 2.2. Let $\phi: G \rightarrow H$ be a homomorphism with kernel K. Let $X=\phi^{-1}(a)$ for $a \in H$. Then:
(1) For any $u \in X, X=\{u k \mid k \in K\}$ and
(2) for any $u \in X, X=\{k u \mid k \in K\}$.

Proof. We prove only (1). Let $u K=\{u k \mid k \in K\}$. For any $k \in K$, we have $\phi(k)=1$, and $u \in X$, so $\phi(u)=a$, and therefore $\phi(u k)=\phi(u) \phi(k)=a 1=a$, so $u k \in X$. Therefore, $u K \subset X$.

Now, let $x \in X$ be any element. Let $k=u^{-1} x$ and note that $\phi(k)=\phi\left(u^{-1} x\right)=\phi(u)^{-1} \phi(x)=a^{-1} a=1$ so $k \in K$. Because $x=u k$, we have shown $x \in u K$ so $X \subset u K$. Therefore, $X=u K$.

These sets $u K$ are very important so have their own name.

Definition 2.3. Let $H \leq G$ be any subgroup and $g \in G$. The left coset of H with respect to g is

$$
g H=\{g h \mid h \in H\} .
$$

The right coset is

$$
H g=\{h g \mid h \in H\} .
$$

We can use the language of cosets to define a quotient group without using the homomorphism ϕ at all.

Theorem 2.4. Let G be a group and let K be the kernel of some homomorphism from G to another group. Then the set of left cosets of K forms a group G / K with binary operation $u K v K=(u v) K$.

Proof. Note that, by the previous proposition, the fibers of ϕ are exactly the cosets of K, so the set G / K is the same as our previous definition. Let us show that this binary operation is welldefined and the same as above. First, let X and Y be fibers so $X=\phi^{-1}(a)$ and $Y=\phi^{-1}(b)$. Let $Z=\phi^{-1}(a b)$ so $X Y=Z$. Let u and v be arbitrary representatives of X and Y, i.e. $X=u K$ and $Y=v K$. To show our new binary operation $u K v K=(u v) K$ is well defined, we need to show that $u v K=Z$, which is implied by saying $u v \in Z$ (by the previous proposition). By definition, $\phi(u)=a$ and $\phi(v)=b$, so we have $\phi(u v)=\phi(u) \phi(v)=a b$ so $u v \in Z$. Therefore, $Z=u v K$.

Example 2.5. The morphism $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ has kernel $\langle n\rangle$. The cosets of $\langle n\rangle$ are exactly the sets $0+\langle n\rangle, 1+\langle n\rangle, 2+\langle n\rangle, \ldots n-1+\langle n\rangle$. The group of cosets has binary operation determined by just adding the first number: $u+\langle n\rangle+v+\langle n\rangle=(u+v)+\langle n\rangle$.

Sometimes Dummit and Foote denotes cosets by \bar{u} instead of $u K$ for simplicity, so the previous example we could write the cosets as $\overline{0}, \overline{1}, \ldots, \overline{n-1}$.

More on cosets:
Proposition 2.6. Let H be any subgroup of G. The set of left cosets form a partition of G, meaning for every $g \in G, g$ appears in some coset of H, and for two different elements $u, v \in G$, either $u H=v H$ or $u H \cap v H=\emptyset$. Furthermore, $u H=v H$ if and only if $v^{-1} u \in H$.

Proof. Because $e \in H$, for any $g \in G, g=g e \in g H$, so every $g \in G$ appears in some coset of H. Now, suppose $u, v \in G$. If $u H \cap v H=\emptyset$, we have nothing to prove. Suppose $u H \cap v H \neq \emptyset$ and let $x \in u H \cap v H$. Then, $x=u h_{1}$ and $x=v h_{2}$ for some $h_{1}, h_{2} \in H$. In particular, $u h_{1}=v h_{2}$, so $u=v h_{2} h_{1}^{-1}$. Because $h_{2} h_{1}^{-1} \in H$, we have $u \in v H$. Therefore, for any $u h \in u H$, $u h=v\left(h_{2} h_{1}^{-1} h\right) \in v H$ so $u H \subset v H$. Similarly, we can show $v H \subset u H$ so $v H=u H$.

Note that we showed $u \in v H$ in the course of the proof, so $u=v h$ for some $h \in H$, so $v^{-1} u=h \in H$. Similarly, if $v^{-1} u=h \in H$, then by the proof $u H \subset v H$. Finally, if $v^{-1} u=h \in H$, then $u^{-1} v=h^{-1} \in H$, so $v H \subset u H$. Therefore, $v^{-1} u \in H$ if and only if $u H=v H$.

