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1. 2.5: The lattice of subgroups of a group

We conclude Chapter 2 with a way of visualizing all subgroups of a given group. This will become
very important when we talk about Galois theory in Math 612!
Construction. Let G be a group. For each subgroup of G, plot the subgroups of G vertically,
starting with {1} at the bottom and G at the top, putting subgroups on the same line if they have
the same number of elements. Connect two subgroups H  G and K  G with a line if H < K

and there does not exist a subgroup K
0 with H < K

0
< K.

Example 1.1. For G = Z6, we listed all of the subgroups already: The subgroups of Z6 are:

• (order 6) h1i = h5i = {0, 1, 2, 3, 4, 5}
• (order 3) h2i = h4i = {0, 2, 4}
• (order 2) h3i = {0, 2}
• (order 1) h0i = {0}

The subgroup lattice is:

Z6

h2i

h3i

h0i

Example 1.2. For G = D8, we can list all of the subgroups. (We leave this as an exercise to verify
this list is complete. Key input: if a subgroup contains ri and sr

j for i = 1, 3 and j = 0, 1, 2, 3, it
must be the whole group.)

• (order 8) hr, si = {1, r, r2, r3, s, sr, sr2, sr3}
• (order 4) hs, r2i = hsr2, r2i = {1, s, r2, sr2}, and hri = hr3i = {1, r, r2, r3},

and hsr, r2i = hsr3, r2i = {1, sr, r2, sr3},
• (order 2) hsi = {1, s}, and hsr2i = {1, sr2}, hr2i = {1, r2}, and hsri = {1, sr}, and
hsr3i = {1, sr3},

• (order 1) h1i = {1}

The subgroup lattice is:
1
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D8

hs, r2i hri hsr, r2i

hsi hsr2i hr2i hsri hsr3i

h1i

2. 3.1: Quotient groups and homomorphisms

Let � : G ! H be a homomorphism. For any a 2 H, the fiber over a, Xa, is the preimage of a:

Xa := �
�1(a) = {g 2 G | �(g) = a}.

We can visualize this schematically as the fibers of G being the ‘vertical’ sets that get contracted
to the point a 2 H (see Dummit and Foote). Using the binary operation in H, we can define
a group structure on the set of nonempty fibers by saying Xa ? Xb = Xab, where ab 2 H is the
product of a and b. This construction is one definition of quotient group.

The prototypical example is the map � : Z ! Zn given by �(x) = x mod n. The fiber Xa is
the set of all zZ such that z = a mod n, i.e. all elements with remainder a. It makes sense to say
Xa+Xb = Xa+b because, for z 2 Xa and w 2 Xb, z = a mod n and w = b mod n, so z+w = a+b

mod n.
Before we formally define quotient groups, some reminders:
Let � : G ! H be a homomorphism. Then:

(1) �(1G) = 1H
(2) �(g�1) = �(g)�1

(3) for any n 2 Z, �(gn) = �(g)n

(4) the kernel of � is the set ker� = {g 2 G | �(g) = 1H} = X1H
. It is a subgroup of G.

(5) the image of � is the set im� = {�(g) | g 2 G}. It is a subgroup of H.

Definition 2.1. Let � : G ! H be a homomorphism with kernel K. The quotient group G/K

(‘G mod K’) is the group

G/K = {Xa | a 2 H}
with Xa ?Xb := Xab.

This may be quite di↵erent than the definition you’ve seen before. To relate them, we introduce
more notation and observations.

Proposition 2.2. Let � : G ! H be a homomorphism with kernel K. Let X = �
�1(a) for a 2 H.

Then:

(1) For any u 2 X, X = {uk | k 2 K} and
(2) for any u 2 X, X = {ku | k 2 K}.

Proof. We prove only (1). Let uK = {uk | k 2 K}. For any k 2 K, we have �(k) = 1, and u 2 X,
so �(u) = a, and therefore �(uk) = �(u)�(k) = a1 = a, so uk 2 X. Therefore, uK ⇢ X.

Now, let x 2 X be any element. Let k = u
�1

x and note that �(k) = �(u�1
x) = �(u)�1

�(x) = a
�1

a = 1
so k 2 K. Because x = uk, we have shown x 2 uK so X ⇢ uK. Therefore, X = uK. ⇤

These sets uK are very important so have their own name.
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Definition 2.3. Let H  G be any subgroup and g 2 G. The left coset of H with respect to g is

gH = {gh | h 2 H}.
The right coset is

Hg = {hg | h 2 H}.

We can use the language of cosets to define a quotient group without using the homomorphism
� at all.

Theorem 2.4. Let G be a group and let K be the kernel of some homomorphism from G to another
group. Then the set of left cosets of K forms a group G/K with binary operation uKvK = (uv)K.

Proof. Note that, by the previous proposition, the fibers of � are exactly the cosets of K, so the
set G/K is the same as our previous definition. Let us show that this binary operation is well-
defined and the same as above. First, let X and Y be fibers so X = �

�1(a) and Y = �
�1(b). Let

Z = �
�1(ab) so XY = Z. Let u and v be arbitrary representatives of X and Y , i.e. X = uK

and Y = vK. To show our new binary operation uKvK = (uv)K is well defined, we need to show
that uvK = Z, which is implied by saying uv 2 Z (by the previous proposition). By definition,
�(u) = a and �(v) = b, so we have �(uv) = �(u)�(v) = ab so uv 2 Z. Therefore, Z = uvK. ⇤
Example 2.5. The morphism � : Z ! Zn has kernel hni. The cosets of hni are exactly the sets
0 + hni, 1 + hni, 2 + hni, ... n� 1 + hni. The group of cosets has binary operation determined by
just adding the first number: u+ hni+ v + hni = (u+ v) + hni.

Sometimes Dummit and Foote denotes cosets by u instead of uK for simplicity, so the previous
example we could write the cosets as 0, 1, . . . , n� 1.

More on cosets:

Proposition 2.6. Let H be any subgroup of G. The set of left cosets form a partition of G,
meaning for every g 2 G, g appears in some coset of H, and for two di↵erent elements u, v 2 G,
either uH = vH or uH \ vH = ;. Furthermore, uH = vH if and only if v�1

u 2 H.

Proof. Because e 2 H, for any g 2 G, g = ge 2 gH, so every g 2 G appears in some coset of H.
Now, suppose u, v 2 G. If uH \ vH = ;, we have nothing to prove. Suppose uH \ vH 6= ;
and let x 2 uH \ vH. Then, x = uh1 and x = vh2 for some h1, h2 2 H. In particular,
uh1 = vh2, so u = vh2h

�1

1
. Because h2h

�1

1
2 H, we have u 2 vH. Therefore, for any uh 2 uH,

uh = v(h2h
�1

1
h) 2 vH so uH ⇢ vH. Similarly, we can show vH ⇢ uH so vH = uH.

Note that we showed u 2 vH in the course of the proof, so u = vh for some h 2 H, so
v
�1

u = h 2 H. Similarly, if v�1
u = h 2 H, then by the proof uH ⇢ vH. Finally, if v�1

u = h 2 H,
then u

�1
v = h

�1 2 H, so vH ⇢ uH. Therefore, v�1
u 2 H if and only if uH = vH. ⇤


