SEPTEMBER 26 NOTES

1. 2.5: THE LATTICE OF SUBGROUPS OF A GROUP

We conclude Chapter 2 with a way of visualizing all subgroups of a given group. This will become
very important when we talk about Galois theory in Math 612!
Construction. Let G be a group. For each subgroup of G, plot the subgroups of G vertically,
starting with {1} at the bottom and G at the top, putting subgroups on the same line if they have
the same number of elements. Connect two subgroups H < G and K < G with a line if H < K
and there does not exist a subgroup K’ with H < K' < K.

Example 1.1. For G = Zg, we listed all of the subgroups already: The subgroups of Zg are:

o (order 6) (1) = (5) = {0,1,2,3,4,5}
o (order 3) (2) = (4) = {0,2,4)

e (order 2) (3) ={0,2}

e (order 1) (0) = {0}

The subgroup lattice is:

Example 1.2. For G = Dg, we can list all of the subgroups. (We leave this as an exercise to verify
this list is complete. Key input: if a subgroup contains r* and sr’ for i = 1,3 and j = 0,1,2,3, it
must be the whole group.)

(order 8) (r,s) = {1,r TT L1738, 87, 37"2 , 813}

forder 4) (s,1%) = (sr ) e 5 1) = ) = (L
and<3r7“>: sr3 r)—{l 57"7’2 3r3}

o (order 2) (s) = {1,s}, and (sr?) = {1,s7%}, (r*) = {1,7%}, and (sr) = {1,sr}, and
(sr3) = {1,513},

e (order 1) (1) = {1}

The subgroup lattice is:
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2. 3.1: QUOTIENT GROUPS AND HOMOMORPHISMS

Let ¢ : G — H be a homomorphism. For any a € H, the fiber over a, X,, is the preimage of a:
Xo=¢""(a) ={g € G| (9) = a}.

We can visualize this schematically as the fibers of G being the ‘vertical’ sets that get contracted
to the point a € H (see Dummit and Foote). Using the binary operation in H, we can define
a group structure on the set of nonempty fibers by saying X, x X = X4, where ab € H is the
product of @ and b. This construction is one definition of quotient group.

The prototypical example is the map ¢ : Z — Z,, given by ¢(x) = x mod n. The fiber X, is
the set of all 2zZ such that z = a mod n, i.e. all elements with remainder a. It makes sense to say
Xo+Xp = X1 because, for z € X, and w € X, 2 =a mod nand w =56 mod n, so z+w =a+b
mod n.

Before we formally define quotient groups, some reminders:

Let ¢ : G — H be a homomorphism. Then:

(1) </5(1G) =1y

(2) o(g7") = d(g)~"

(3) for any n € Z, ¢(g") = ¢(9)"

(4) the kernel of ¢ is the set ker¢p = {g € G | #(g9) = 1y} = X1,. It is a subgroup of G.
(5) the image of ¢ is the set im¢p = {¢(g) | g € G}. It is a subgroup of H.

Definition 2.1. Let ¢ : G — H be a homomorphism with kernel K. The quotient group G/K
(‘G mod K) is the group

G/K={X,|a€ H}
with Xa * Xb = Xab~

This may be quite different than the definition you’ve seen before. To relate them, we introduce
more notation and observations.

Proposition 2.2. Let ¢ : G — H be a homomorphism with kernel K. Let X = ¢~ '(a) fora € H.
Then:

(1) For anyu e X, X ={uk |k € K} and

(2) foranyue X, X ={ku|k € K}.

Proof. We prove only (1). Let uK = {uk | k € K}. For any k € K, we have ¢(k) =1, and u € X,
so ¢(u) = a, and therefore ¢p(uk) = ¢(u)p(k) = al = a, so uk € X. Therefore, uK C X.

Now, let z € X be any element. Let k = v~ !x and note that ¢(k) = ¢(u"12) = ¢(u) lé(x) =ala =1
so k € K. Because © = uk, we have shown = € uK so X C uK. Therefore, X = uK. O

These sets uK are very important so have their own name.
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Definition 2.3. Let H < G be any subgroup and g € G. The left coset of H with respect to g is
gH ={gh|he H}.

The right coset is
Hg={hg|he H}.

We can use the language of cosets to define a quotient group without using the homomorphism
¢ at all.

Theorem 2.4. Let G be a group and let K be the kernel of some homomorphism from G to another
group. Then the set of left cosets of K forms a group G/K with binary operation uKvK = (uv)K.

Proof. Note that, by the previous proposition, the fibers of ¢ are exactly the cosets of K, so the
set G/K is the same as our previous definition. Let us show that this binary operation is well-
defined and the same as above. First, let X and Y be fibers so X = ¢~ (a) and Y = ¢~ 1(b). Let
Z = ¢~ Y(ab) so XY = Z. Let u and v be arbitrary representatives of X and Y, i.e. X = uK
and Y = vK. To show our new binary operation uKvK = (uv)K is well defined, we need to show
that wvK = Z, which is implied by saying uv € Z (by the previous proposition). By definition,
¢(u) = a and ¢(v) = b, so we have ¢p(uv) = ¢p(u)p(v) = ab so uv € Z. Therefore, Z = uvK. O

Example 2.5. The morphism ¢ : Z — Z, has kernel (n). The cosets of (n) are exactly the sets
0+ (n), 1+ (n), 2+ (n), ... n — 14 (n). The group of cosets has binary operation determined by
just adding the first number: v+ (n) + v + (n) = (v +v) + (n).

Sometimes Dummit and Foote denotes cosets by u instead of uK for simplicity, so the previous
example we could write the cosets as 0,1,...,n — 1.
More on cosets:

Proposition 2.6. Let H be any subgroup of G. The set of left cosets form a partition of G,
meaning for every g € G, g appears in some coset of H, and for two different elements u,v € G,
either uH = vH or uH NvH = (). Furthermore, uH = vH if and only if v"'u € H.

Proof. Because e € H, for any g € G, g = ge € gH, so every g € G appears in some coset of H.
Now, suppose u,v € G. If uH NvH = (), we have nothing to prove. Suppose uH NvH # ()
and let * € uH NvH. Then, * = uh; and * = wvhe for some hi,ho € H. In particular,
uh1 = vhe, so u = vhghl_l. Because hghl_l € H, we have u € vH. Therefore, for any uh € uH,
uh = v(hah'h) € vH so uH C vH. Similarly, we can show vH C uH so vH = uH.

Note that we showed u € vH in the course of the proof, so u = vh for some h € H, so
v~ lu = h € H. Similarly, if v"'u = h € H, then by the proof uH C vH. Finally, if v™'u = h € H,
then v v = h™' € H, so vH C uH. Therefore, v™'u € H if and only if uH = vH. O



