
SEPTEMBER 21 NOTES

1. 2.3: Cyclic groups and cyclic subgroups

First, reminders and propositions from last time:

Definition 1.1. A group G is cyclic if there exists an element x ∈ G such that G = ⟨x⟩. In this
case, we say G is generated by x.

Proposition 1.2. If G = ⟨x⟩ is a cyclic group, then:

(1) If |G| = ord(x) = n < ∞, then the distinct elements of G are {1, x, . . . , xn−1} with xn = 1.
(2) If |G| = ord(x) = ∞, then for all n ̸= 0, xn ̸= 1. For all integers a ̸= b, xa ̸= xb.

Proposition 1.3. Let G be a group and x ∈ G. If xn = 1 and xm = 1 for integers m,n, then
xd = 1 where d = (m,n). In particular, if xm = 1, then ord(x) divides m.

Our goal is to use these, together with the next propositions, to classify all subgroups of cyclic
groups.

Proposition 1.4. Let G be a group and x ∈ G and a a nonzero integer.

(1) If ord(x) = ∞, then ord(xa) = ∞.
(2) If ord(x) = n, then ord(xa) = n

(n,a) . In particular, if a divides n, then ord(xa) = n
a .

Proof. For (1), assume for contradiction that ord(x) = ∞ but ord(xa) = n. Then, (xa)n = 1,
so xan = 1 and hence x−an = 1. As one of an and −an is positive, we have ord(x) ≤ |an|, a
contradiction.

Now, for (2), let y = xa and denote d = (n, a). By definition, n = db and a = dc for some
integers b, c such that (b, c) = 1. To prove (2), we must show that ord(y) = b. First, note that
yb = (xa)b = xab = xnc = (xn)c = 1c = 1, so ord(y) ≤ b. By a previous proposition, we also know
that ord(y) | b, so write k = ord(y). Therefore, yk = xak = 1. Because n = ord(x), n | ak, so
db | dck and hence b | ck. But, (b, c) = 1, so this implies b | k. Because b | k and k | b, we must
have k = b, i.e. ord(y) = b, as desired. □

Proposition 1.5. Let G = ⟨x⟩ be a cyclic group.

(1) If ord(x) = ∞, then xa is a generator of G if and only if a = ±1.
(2) If ord(x) = n, then xa is a generator of G if and only if (a, n) = 1.

Before the proof, note that this says the number of generators of a finite cyclic group is equal
to the number of integers in {1, . . . , n − 1} that are relatively prime to n. This is called Euler’s
totient function or Euler’s ϕ function, denoted ϕ(n).

Proof. (1) is an exercise. For (2), note that the previous propositions say that ord(xa) = n
(n,a) and

the size of the group ⟨xa⟩ is exactly ord(xa). This contains all elements of G if and only if it is the
same size as G, if and only if ord(xa) = n, if and only if (n, a) = 1. □

Example 1.6. Which elements of Z12 generate Z12? Because Z12 = ⟨1⟩ and ord(1) = 12, the only
elements a11 that can generate Z12 are those that are relatively prime to 12, i.e. 1, 5, 7, 11.

Example 1.7. If p is prime, every nonzero element of Zp generates Zp.

Finally, we classify all subgroups of cyclic groups.

1here, x = 1, and instead of writing xa, we write ax because we are in an additive group
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Theorem 1.8. Let G = ⟨x⟩ be a cyclic group. Then:

(1) Every subgroup H of G is cyclic and can be written as either H = {1} or H = ⟨xd⟩ where
d is the smallest positive power of x appearing in H.

(2) If |G| = ∞, then for any distinct nonnegative integers a, b, ⟨xa⟩ ≠ ⟨xb⟩.
(3) If |G| = ∞, for any integer a, then ⟨xa⟩ = ⟨x|a|⟩.
(4) If |G| = n, then for each positive integer a dividing n, there is a unique subgroup H of order

a given by H = ⟨xn/a⟩.
(5) If |G| = n, for any integer b, ⟨xb⟩ = ⟨x(b,n)⟩.

Proof. We prove (1) and (4) leaving the others as exercises.
For (1), let H ≤ G be any subgroup. If H = {1}, then the statement holds. So, assume there

is an element xa ∈ H, a ̸= 0. Because xa ∈ H implies x−a ∈ H, we may assume that a > 0. In
particular, we know that H contains positive powers of x. Let d be the smallest positive power
of x that appears in H. Because H is a subgroup and xd ∈ H, we have ⟨xd⟩ ≤ H. We aim
to show these are equal. Let xb ∈ H be any element. By the division algorithm, we may write
b = qd+ r where 0 ≤ r < d, so xb = xqd+r = (xd)qxr. Because xd ∈ H, (xd)−q ∈ H, and therefore
xb(xd)−q = xr ∈ H. Because d was chosen to be the smallest positive power appearing in H, we
must have r = 0. Therefore, every element of H is (xd)q for some integer q, so H ≤ ⟨xd⟩ and we
conclude H = ⟨xd⟩.

For (4), suppose |G| = n and let a be a positive integer dividing n. If d = n/a, then by the
previous propositions, ⟨xd⟩ has order a so is a subgroup of order a. To prove uniqueness, let H be
any subgroup of G of order a. By (1), H = ⟨xb⟩ where b is the smallest positive integer such that
xb ∈ H, and by the previous propositions, a = |H| = ord(xb) = n

(b,n) . Because d = n/a, we have

d = (b, n) and hence d | b. Therefore, xb ∈ ⟨xd⟩, so H ≤ ⟨xd⟩. However, both of these sets have a
elements, so they must be equal, and we conclude H = ⟨xd⟩. □

Example 1.9. The subgroups of Z6 are:

• (order 6) ⟨1⟩ = ⟨5⟩
• (order 3) ⟨2⟩ = ⟨4⟩
• (order 2) ⟨3⟩
• (order 1) ⟨0⟩

2. 2.4: Subgroups generated by subsets of a group

We want to generalize the idea of subgroup generated by one element to subgroup generated by
several elements.

Note: in class, we only gave the second definition below. It is more useful and practical than the
first. But, feel free to read both if you want to follow Dummit and Foote.

Proposition 2.1. If A is a nonempty collection of subgroups of G, then the intersection of all
members of A is a subgroup of G.

Proof. Exercise, or see the book. □

Definition 2.2. If A is any nonempty subset of a group G, then the subgroup generated by A
is the subgroup

⟨A⟩ =
⋂

A⊂H,H≤G

H

In words, it is the intersection of all subgroups of G containing A.

While this definition is short, there is an alternative that can sometimes be more useful.
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Definition 2.3. Let A be a nonempty subset of a group G and define the subgroup generated
by A to be

A = {Πi∈{1,...,n}a
ei
i | n ∈ Z≥0, ai ∈ A, ei = ±1.}

This is the collection of all finite products of elements of A and their inverses. Note that any
element a ∈ A can appear as several different ai’s: we do not require that the ai’s are distinct.

We show that the two definitions are the same:

Proposition 2.4. For any nonempty subset A of a group G, ⟨A⟩ = A.

Proof. First, one shows that A is indeed a subgroup of G. This is left as an exercise.
If a ∈ A is any element, then a = a1 ∈ A, so A ⊂ A, so ⟨A⟩ ⊂ A. But, A ⊂ ⟨A⟩, so any product

of elements of A and their inverses is contained in ⟨A⟩, so ⟨A⟩ = A. □

Remark 2.5. If G is not abelian, the subgroup generated by an arbitrary subset can be very
complicated and in general we can essentially nothing about the size/order of elements/etc of ⟨A⟩.
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