SEPTEMBER 19 NOTES

Last time, we introduced several examples of subgroups. We'll use them again today, so we briefly recap.

1. 2.2: Centralizers, normalizers, stabilizers, and kernels

In what follows, G will denote a group and A will denote a nonempty set.
Definition 1.1. If A is a subset of G, the centralizer $C_{G}(A)$ is the set

$$
C_{G}(A)=\left\{g \in G \mid g a g^{-1}=a \text { for all } a \in A\right\} .
$$

Equivalently,

$$
C_{G}(A)=\{g \in G \mid g a=a g \text { for all } a \in A\} .
$$

For any A, the center is a subgroup of G.
Definition 1.2. The center of a group G is the set $Z(G)$ of elements

$$
Z(G)=\{g \in G \mid g x=x g \text { for all } x \in G\}
$$

The center is the set of elements that commute with all elements of G.
By definition, $Z(G)=C_{G}(G)$ so it is a subgroup of G. In general, for any A subset of G, $Z(G) \leq C_{A}(G)$.

Definition 1.3. If $g \in G$ is an element of a group and A is a nonempty subset of G, then $g A g-1=\left\{g a g^{-1} \mid a \in A\right\}$. The normalizer of A in G is the set

$$
N_{G}(A)=\left\{g \in G \mid g A g^{-1}=A\right\} .
$$

For any A, the normalizer is a subgroup of G.
Note that if $g \in C_{G}(A)$, then $g a g^{-1}=a$ for all $a \in A$, so $g A g^{-1}=A$, which implies that $C_{G}(A) \subset N_{G}(A)$. In particular:

Proposition 1.4. $C_{G}(A) \leq N_{G}(A)$ and $N_{G}(A) \leq G$.
So, in general, we have the chain of inclusions of subgroups

$$
Z(G) \leq C_{G}(A) \leq N_{G}(A) \leq G .
$$

The following example will illustrate this.
Example 1.5. Let $G=D_{8}$. Then, $Z(G)=\left\{1, r^{2}\right\}$. We show this by demonstrating that these elements commute with all elements of D_{8}, and by exhibiting an example to show that no other elements commute with everything.

Write $D_{8}=\left\{1, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}$. Recall that $r^{k} s=s r^{4-k}$.
First, $1 \in Z(G)$ by definition. Also, $r^{2} \in Z(G)$ because $r^{2} r^{j}=r^{2+j}=r^{j} r^{2}$ for any $j \in \mathbb{Z}$, and $r^{2} s r^{j}=s r^{4-2} r^{j}=s r^{2} r^{j}=s r^{j} r^{2}$ for any $j \in \mathbb{Z}$.

Now, $r, r^{3} \neq Z(G)$ because $s r \neq r s=s r^{3}$, and $s r^{3} \neq r^{3} s=s r$. Also, $s \neq Z(G)$ again because $s r \neq r s$. Similarly, $s r^{j} \neq Z(G)$ because $s r^{j} r=s r^{j+1} \neq r s r^{j}=s r^{3+j}$. Therefore, no other elements of D_{8} can be in the center so $Z\left(D_{8}\right)=\left\{1, r^{2}\right\}$.

Now, let $A=\left\{1, r, r^{2}, r^{3}\right\}$. We can show (using the same ideas as above) that

$$
C_{G}(A)=\underset{1}{\left\{1, r, r^{2}, r^{3}\right\} .}
$$

The key points are that: (1) by our computation above of the center, powers of r commute with other powers of r, and (2) s doesn't commute with all powers of r.

Finally, we can compute $N_{G}(A)$. In this case, we will find that $N_{G}(A)=G$! We know that $C_{G}(A) \subset N_{G}(A)$, so definitely all powers of r are in the normalizer, but it turns out that the $s r$'s are also in the normalizer. Let's check this for just s. To be in the normalizer, we must have $s A s^{-1}=A$. Because $s^{-1}=s$, we must show $s A s=A$. We just compute:

$$
s A s=\left\{s 1 s, s r s, s r^{2} s, s r^{3} s\right\}=\left\{1, r^{3}, r^{2}, r\right\}=A .
$$

Note that we are not asking for sas $=a$ for any $a \in A$, simply that sas $\in A$ for $a \in A$. Even though conjugating by s changes the order of the elements of A, it still gives us the same set, so $s \in N_{G}(A)$. You can perform a similar computation for any other element in G.

In summary, for $A=\left\{1, r, r^{2}, r^{3}\right\}$, we have:

$$
Z(G)=\left\{1, r^{2}\right\} \leq C_{G}(A)=\left\{1, r, r^{2}, r^{3}\right\} \leq N_{G}(A)=\left\{1, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\} .
$$

2. 2.3: Cyclic groups and cyclic subgroups

We will spend the next section focusing on a specific type of subgroup.
Recall from last time:
Definition 2.1. If G is a group and $x \in G$ is any element, the subgroup generated by x is the set

$$
\langle x\rangle=\left\{x^{n} \mid n \in \mathbb{Z}\right\}=\left\{\ldots, x^{-1}, 1, x, x^{2}, \ldots\right\} .
$$

Definition 2.2. A group G is cyclic if there exists an element $x \in G$ such that $G=\langle x\rangle$. In this case, we say G is generated by x.
Lemma 2.3. Cyclic groups are abelian.
Proof. If G is cyclic, then $G=\langle x\rangle$ for some $x \in G$. Therefore, for any $a, b \in G, a=x^{n}$ and $b=x^{m}$ for some $n, m \in \mathbb{Z}$, so

$$
a b=x^{n} x^{m}=x^{n+m}=x^{m+n}=x^{m} x^{n}=b a .
$$

Because a, b commute for arbitrary $a, b \in G, G$ is abelian.
Example 2.4. Any non-abelian group cannot be cyclic. So, $D_{2 n}$ and $S_{n}, n \geq 3$, are not cyclic.
In this section, we will encounter many additive groups (groups with binary operation addition) so we will sometimes switch to additive notation and write

$$
\langle x\rangle=\{n x \mid n \in \mathbb{Z}\} .
$$

Example 2.5. \mathbb{Z} is cyclic because $\mathbb{Z}=\langle 1\rangle$. Similarly, \mathbb{Z}_{n} is cyclic because $\mathbb{Z}_{n}=\langle 1\rangle$.
Proposition 2.6. If $G=\langle x\rangle$ is a cyclic group, then:
(1) If $\operatorname{ord}(x)=n<\infty$, then $G=\left\{1, x, \ldots, x^{n-1}\right\}$ and $x^{n}=1$.
(2) If $\operatorname{ord}(x)=\infty$, then for all $n \neq 0, x^{n} \neq 1$. For all integers $a \neq b, x^{a} \neq x^{b}$.

In particular, $|G|=\operatorname{ord}(x)$.
Proof. Suppose $G=\langle x\rangle$ and suppose $\operatorname{ord}(x)=n$. Then, $\left\{1, x, \ldots, x^{n-1}\right\}$ are distinct elements of G : if $x^{a}=x^{b}$ for $0 \leq a<b<n$, then $x^{b-a}=x^{0}=1$, so $\operatorname{ord}(x) \leq b-a<n$, a contradiction. Therefore, G has at least $\operatorname{ord}(x)$ elements. Now, we show that every element of G is one of the ones listed above. If $y \in G$ is any element, then $y=x^{a}$ for some $a \in \mathbb{Z}$. By the division algorithm, we can write $a=q n+r$ where $0 \leq r<n$, so $x^{a}=x^{q n+r}=\left(x^{n}\right)^{q} x^{r}=1 x^{r}=x^{r}$. Therefore, $y=x^{r} \in\left\{1, x, \ldots, x^{n-1}\right\}$ so $G=\left\{1, x, \ldots, x^{n-1}\right\}$.

Now suppose ord $(x)=\infty$. If $x^{a}=x^{b}$ for integers $a \neq b, a<b$, then $x^{b-a}=1$, so ord $(x) \leq b-a$, a contradiction. Therefore, every power of x is distinct so $|G|=\infty$.

We can use this proposition to classify all cyclic groups.
Theorem 2.7. Any two cyclic groups of the same order are isomorphic. In fact,
(1) If $\langle x\rangle$ is a cyclic group of order n, then the map $\phi: \mathbb{Z}_{n} \rightarrow\langle x\rangle$ given by $k \mapsto x^{k}$ is an isomorphism. In other words, every finite cyclic group is isomorphic to \mathbb{Z}_{n}.
(2) If $\langle x\rangle$ is an infinite cyclic group, then the map $\phi: \mathbb{Z} \rightarrow\langle x\rangle$ given by $k \mapsto y^{k}$ is an isomorphism. In other words, every infinite cyclic group is isomorphic to \mathbb{Z}.
Proof. We start with (1). Let us prove this is a bijective homomorphism. We first check the homomorphism condition. If $a, b \in \mathbb{Z}_{n}$ such that $a+b<n$, then $a+b(\bmod n)=a+b$, so

$$
\phi(a+b)=x^{a+b}=x^{a} x^{b}=\phi(a) \phi(b) .
$$

If $a+b \geq n$, then $a+b(\bmod n)=a+b-n$, so

$$
\phi(a+b \quad(\bmod n))=\phi(a+b-n)=x^{a+b-n}=x^{a} x^{b} x^{-n}=x^{a} x^{b} 1=\phi(a) \phi(b) .
$$

Therefore, the homomorphism condition holds.
Also, the map is injective by definition, since the previous proposition says the elements $\left\{1, x, \ldots, x^{n-1}\right\}$ are distinct. An injection between finite sets of the same order must be a bijection, so we have proved that ϕ is an isomorphism.

Now, we prove (2). Assume $\langle x\rangle$ is an infinite cyclic group. The map satisfies the homomorphism condition by laws of exponents:

$$
\phi(a+b)=x^{a+b}=x^{a} x^{b}=\phi(a) \phi(b) .
$$

It is also injective by the previous proposition. Finally, by definition of a cyclic group, it is surjective. Therefore, it is an isomorphism.

This says that, up to isomorphism, cyclic groups are either \mathbb{Z}_{n} or \mathbb{Z}.
Next, we will begin to classify all subgroups of cyclic groups. We start with a few propositions.
Proposition 2.8. Let G be a group and $x \in G$. If $x^{n}=1$ and $x^{m}=1$ for integers m, n, then $x^{d}=1$ where $d=(m, n)$. In particular, if $x^{m}=1$, then $\operatorname{ord}(x)$ divides m.
Proof. Suppose $x^{n}=x^{m}=1$. By the Euclidean algorithm, there exist integers r, s such that $d=(m, n)=r m+s n$, so

$$
x^{d}=x^{r m+s n}=\left(x^{m}\right)^{r}\left(x^{n}\right)^{s}=1^{r} 1^{s}=1 .
$$

Now suppose $x^{m}=1$ and let $n=\operatorname{ord}(x)$, so $x^{n}=1$. If $m=0$, then $n \mid m$, so the proposition holds. If $m \neq 0$, let $d=(m, n)$. By definition, $d \mid m$, and by the first statement, $x^{d}=1$. Because the order is the smallest positive power such that $x^{n}=1$, we must have $d=n$, so $n \mid m$.

We will continue next time.

