
SEPTEMBER 19 NOTES

Last time, we introduced several examples of subgroups. We’ll use them again today, so we
briefly recap.

1. 2.2: Centralizers, normalizers, stabilizers, and kernels

In what follows, G will denote a group and A will denote a nonempty set.

Definition 1.1. If A is a subset of G, the centralizer CG(A) is the set

CG(A) = {g ∈ G | gag−1 = a for all a ∈ A}.
Equivalently,

CG(A) = {g ∈ G | ga = ag for all a ∈ A}.

For any A, the center is a subgroup of G.

Definition 1.2. The center of a group G is the set Z(G) of elements

Z(G) = {g ∈ G | gx = xg for all x ∈ G}.
The center is the set of elements that commute with all elements of G.

By definition, Z(G) = CG(G) so it is a subgroup of G. In general, for any A subset of G,
Z(G) ≤ CA(G).

Definition 1.3. If g ∈ G is an element of a group and A is a nonempty subset of G, then
gAg−1 = {gag−1 | a ∈ A}. The normalizer of A in G is the set

NG(A) = {g ∈ G | gAg−1 = A}.

For any A, the normalizer is a subgroup of G.
Note that if g ∈ CG(A), then gag−1 = a for all a ∈ A, so gAg−1 = A, which implies that

CG(A) ⊂ NG(A). In particular:

Proposition 1.4. CG(A) ≤ NG(A) and NG(A) ≤ G.

So, in general, we have the chain of inclusions of subgroups

Z(G) ≤ CG(A) ≤ NG(A) ≤ G.

The following example will illustrate this.

Example 1.5. Let G = D8. Then, Z(G) = {1, r2}. We show this by demonstrating that these
elements commute with all elements of D8, and by exhibiting an example to show that no other
elements commute with everything.

Write D8 = {1, r, r2, r3, s, sr, sr2, sr3}. Recall that rks = sr4−k.
First, 1 ∈ Z(G) by definition. Also, r2 ∈ Z(G) because r2rj = r2+j = rjr2 for any j ∈ Z, and

r2srj = sr4−2rj = sr2rj = srjr2 for any j ∈ Z.
Now, r, r3 ̸= Z(G) because sr ̸= rs = sr3, and sr3 ̸= r3s = sr. Also, s ̸= Z(G) again because

sr ̸= rs. Similarly, srj ̸= Z(G) because srjr = srj+1 ̸= rsrj = sr3+j . Therefore, no other elements
of D8 can be in the center so Z(D8) = {1, r2}.

Now, let A = {1, r, r2, r3}. We can show (using the same ideas as above) that

CG(A) = {1, r, r2, r3}.
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The key points are that: (1) by our computation above of the center, powers of r commute with
other powers of r, and (2) s doesn’t commute with all powers of r.

Finally, we can compute NG(A). In this case, we will find that NG(A) = G! We know that
CG(A) ⊂ NG(A), so definitely all powers of r are in the normalizer, but it turns out that the sr’s
are also in the normalizer. Let’s check this for just s. To be in the normalizer, we must have
sAs−1 = A. Because s−1 = s, we must show sAs = A. We just compute:

sAs = {s1s, srs, sr2s, sr3s} = {1, r3, r2, r} = A.

Note that we are not asking for sas = a for any a ∈ A, simply that sas ∈ A for a ∈ A. Even
though conjugating by s changes the order of the elements of A, it still gives us the same set, so
s ∈ NG(A). You can perform a similar computation for any other element in G.

In summary, for A = {1, r, r2, r3}, we have:

Z(G) = {1, r2} ≤ CG(A) = {1, r, r2, r3} ≤ NG(A) = {1, r, r2, r3, s, sr, sr2, sr3}.

2. 2.3: Cyclic groups and cyclic subgroups

We will spend the next section focusing on a specific type of subgroup.
Recall from last time:

Definition 2.1. If G is a group and x ∈ G is any element, the subgroup generated by x is the
set

⟨x⟩ = {xn | n ∈ Z} = {. . . , x−1, 1, x, x2, . . . }.

Definition 2.2. A group G is cyclic if there exists an element x ∈ G such that G = ⟨x⟩. In this
case, we say G is generated by x.

Lemma 2.3. Cyclic groups are abelian.

Proof. If G is cyclic, then G = ⟨x⟩ for some x ∈ G. Therefore, for any a, b ∈ G, a = xn and b = xm

for some n,m ∈ Z, so
ab = xnxm = xn+m = xm+n = xmxn = ba.

Because a, b commute for arbitrary a, b ∈ G, G is abelian. □

Example 2.4. Any non-abelian group cannot be cyclic. So, D2n and Sn, n ≥ 3, are not cyclic.

In this section, we will encounter many additive groups (groups with binary operation addition)
so we will sometimes switch to additive notation and write

⟨x⟩ = {nx | n ∈ Z}.

Example 2.5. Z is cyclic because Z = ⟨1⟩. Similarly, Zn is cyclic because Zn = ⟨1⟩.

Proposition 2.6. If G = ⟨x⟩ is a cyclic group, then:

(1) If ord(x) = n < ∞, then G = {1, x, . . . , xn−1} and xn = 1.
(2) If ord(x) = ∞, then for all n ̸= 0, xn ̸= 1. For all integers a ̸= b, xa ̸= xb.

In particular, |G| = ord(x).

Proof. Suppose G = ⟨x⟩ and suppose ord(x) = n. Then, {1, x, . . . , xn−1} are distinct elements of
G: if xa = xb for 0 ≤ a < b < n, then xb−a = x0 = 1, so ord(x) ≤ b − a < n, a contradiction.
Therefore, G has at least ord(x) elements. Now, we show that every element of G is one of the
ones listed above. If y ∈ G is any element, then y = xa for some a ∈ Z. By the division algorithm,
we can write a = qn + r where 0 ≤ r < n, so xa = xqn+r = (xn)qxr = 1xr = xr. Therefore,
y = xr ∈ {1, x, . . . , xn−1} so G = {1, x, . . . , xn−1}.

Now suppose ord(x) = ∞. If xa = xb for integers a ̸= b, a < b, then xb−a = 1, so ord(x) ≤ b− a,
a contradiction. Therefore, every power of x is distinct so |G| = ∞. □
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We can use this proposition to classify all cyclic groups.

Theorem 2.7. Any two cyclic groups of the same order are isomorphic. In fact,

(1) If ⟨x⟩ is a cyclic group of order n, then the map ϕ : Zn → ⟨x⟩ given by k 7→ xk is an
isomorphism. In other words, every finite cyclic group is isomorphic to Zn.

(2) If ⟨x⟩ is an infinite cyclic group, then the map ϕ : Z → ⟨x⟩ given by k 7→ yk is an
isomorphism. In other words, every infinite cyclic group is isomorphic to Z.

Proof. We start with (1). Let us prove this is a bijective homomorphism. We first check the
homomorphism condition. If a, b ∈ Zn such that a+ b < n, then a+ b (mod n) = a+ b, so

ϕ(a+ b) = xa+b = xaxb = ϕ(a)ϕ(b).

If a+ b ≥ n, then a+ b (mod n) = a+ b− n, so

ϕ(a+ b (mod n)) = ϕ(a+ b− n) = xa+b−n = xaxbx−n = xaxb1 = ϕ(a)ϕ(b).

Therefore, the homomorphism condition holds.
Also, the map is injective by definition, since the previous proposition says the elements {1, x, . . . , xn−1}

are distinct. An injection between finite sets of the same order must be a bijection, so we have
proved that ϕ is an isomorphism.

Now, we prove (2). Assume ⟨x⟩ is an infinite cyclic group. The map satisfies the homomorphism
condition by laws of exponents:

ϕ(a+ b) = xa+b = xaxb = ϕ(a)ϕ(b).

It is also injective by the previous proposition. Finally, by definition of a cyclic group, it is surjective.
Therefore, it is an isomorphism. □

This says that, up to isomorphism, cyclic groups are either Zn or Z.
Next, we will begin to classify all subgroups of cyclic groups. We start with a few propositions.

Proposition 2.8. Let G be a group and x ∈ G. If xn = 1 and xm = 1 for integers m,n, then
xd = 1 where d = (m,n). In particular, if xm = 1, then ord(x) divides m.

Proof. Suppose xn = xm = 1. By the Euclidean algorithm, there exist integers r, s such that
d = (m,n) = rm+ sn, so

xd = xrm+sn = (xm)r(xn)s = 1r1s = 1.

Now suppose xm = 1 and let n = ord(x), so xn = 1. If m = 0, then n | m, so the proposition
holds. If m ̸= 0, let d = (m,n). By definition, d | m, and by the first statement, xd = 1. Because
the order is the smallest positive power such that xn = 1, we must have d = n, so n | m. □

We will continue next time.
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